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ABSTRACT
In the era of big data, networks are often frommultiple sources such
as the social networks of diverse platforms (e.g., Facebook, Twit-
ter), protein-protein interaction (PPI) networks of different tissues,
transaction networks at multiple financial institutes and knowledge
graphs derived from a variety of knowledge bases (e.g., DBpedia,
Freebase, etc.). The very first step before exploring insights from
these multi-sourced networks is to integrate and unify different
networks. In general, network alignment is such a task that aims to
uncover the correspondences among nodes across different graphs.
The challenges of network alignment include: (1) the heterogeneity
of the multi-sourced networks, e.g., different structural patterns,
(2) the variety of the real-world networks, e.g., how to leverage
the rich contextual information, and (3) the computational com-
plexity. The goal of this tutorial is to (1) provide a comprehensive
overview of the recent advances in network alignment, and (2)
identify the open challenges and future trends. We believe this
can be beneficial to numerous application problems, and attract
both researchers and practitioners from both data mining area and
other interdisciplinary areas. In particular, we start with introduc-
ing the backgrounds, problem definition and key challenges of
network alignment. Next, our emphases will be on (1) the recent
techniques on addressing network alignment problem and other
related problems with a careful balance between the algorithms
and applications, and (2) the open challenges and future trends.

1 INTENDED AUDIENCE
All researchers and practitioners engaged in big data researches (e.g.,
graph mining and related domains such as social network analysis,
bioinformatics, cybersecurity, knowledge graphs) are welcome. No
prior knowledge on specific algorithms is required. The audiences
are assumed to have the basic knowledge on linear algebra and
machine learning. The tutorial aims to achieve a good balance
between the introductory and advanced materials (40% novice, 30%
intermediate, 30% advanced).
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State University in 2015 and B.Eng degree in ECE from Xi’an Jiao-
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rations (ACM), an action editor of Data Mining and Knowledge Dis-
covery (Springer), and an associate editor of Knowledge and Infor-
mation Systems (Springer) and Neurocomputing Journal (Elsevier);
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Data 2015, SDM 2016, WSDM 2018, KDD 2018 (http://www.public.
asu.edu/~liangyue/team-tutorial.html), etc.

3 OUTLINE OF THE COVERED TOPICS
• Introduction (20 minutes)
– Motivations
– Problem definitions and related settings
– Key challenges
– Traditional solutions and limitations

• Part I: Recent Network Alignment Algorithms (90 minutes)
– Pairwise network alignment
– Collective network alignment
– High-order network alignment
– Hierarchical network alignment
– Knowledge graph alignment
– Cross-layer dependency inference

• Part II: Network Alignment Applications (40 minutes)
– Applications in social analysis
– Applications in bioinformatics
– Applications in knowledge completion
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– Applications in security
• Part III: Future Research Directions (30 minutes)
– Big network alignment
– Adversarial network alignment
– Active network alignment
– Integrated network alignment

4 DESCRIPTIONS OF THE COVERED TOPICS
4.1 Part I: Network Alignment Algorithms
In this part, we review the state-of-the-art techniques on network
alignment. We first categorize network alignment algorithms into
the following scenarios. (1) Pairwise network alignment. It aims to
find the node correspondence across two networks. Various meth-
ods have been proposed including: alignment consistency based
methods [1, 8, 19], embedding based methods [6, 9, 22], optimal
transport based methods [10, 14]. (2) Collective network alignment,
to collectively align multiple networks. Representative works in-
clude the alignment consistency based methods [18, 21], embedding
based methods [3, 4]. (3) High-order network alignment. Different
from pairwise network alignment that maximizes the number of
conserved edges among the aligned nodes, the number of higher-
order substructures (e.g., triangles) is maximized [11]. (4) Hierarchi-
cal network alignment, to simultaneously unveil the correspondence
among nodes and clusters at different resolutions. We present a
recent method [20] which uses the multilevel optimization and
multi-resolution matrix factorization [7]. In addition, we present
another two closely related topics. These include: (1) knowledge
graph alignment to align entities across different knowledge graphs,
which can be further categorized into knowledge graph embedding
based methods [12, 23], and graph neural network based methods
[13, 16], and (2) cross-layer dependency inference which aims to
infer the node dependencies in the multi-layered networks [2].

4.2 Part II: Network Alignment Applications
In this part, we will present how network alignment can be used in
numerous application domains including: (1) social analysis where
network alignment is used to unveil unique users on different social
platforms [17], (2) bioinformatics where network alignment is often
used to align different PPI networks for identifying functionally
similar regions across different species and transfer the knowledge
which further benefits studying more sophisticated problems (e.g.,
gene-disease associations) [5], (3) knowledge completion where enti-
ties in knowledge graphs are aligned to construct a unified knowl-
edge base [23], and (4) security where multi-sourced information
can be integrated to recognize adversarial activities [15].

4.3 Part III: Future Research Directions
In this part, we will summarize some open challenges and future
trends in this field, including (1) big network alignment that aims
to address the 4Vs characteristics (volume, variety, velocity and
veracity) of big networks, (2) adversarial network alignment that
leverages adversarial learning techniques to improve the alignment
effectiveness and robustness, (3) active network alignment that can
interact with other labeling oracles (e.g., humans) to deal with dif-
ficult alignment cases, and (4) integrated network alignment that

instead of using network alignment as a separate pre-processing, in-
tegrates with other network mining tasks, e.g., explainable network
alignment, fair network alignment, etc.
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