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Networks and Graphs Are Everywhereg@
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Networks Are Multi-sourced ?@L
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Example of Multi-networks

* Inter-dependent traffic networks
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e TRAM

® o003

[1] Aleta, Alberto, and Yamir Moreno. "Multilayer networks in a nutshell." Annual Review of Condensed Matter

Physics 10 (2019): 45-62.




Example of Multi-networks

e Network Science of Teams

[1] G.S. McChrystal, C. Tantum, S. David, and F. Chris:. Team of teams: New rules of engagement for a complex world. Penguin, 2015.

[2] N. Contractor, L.A. DeChurch, A. Sawant, and X. Li: My Dream Team Assembler, 2013.

[3] W. Stefan, B. Jones, and B. Uzzi: The Increasing Dominance of Teams in the Production of Knowledge. Science, May 2007, 316:1036-1039.
[4] Network Science of Teams Project Website: http://team-net-work.org

[5]Li, L, and H. Tong: Network Science of Teams: Characterization, Prediction, and Optimization. WSDM 2018 tutorial
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Example of Multi-networks

 Complex industrial networks:

Wide Area Network (WAN)
Data Center - Virtualized Servers
+ ERP - Business Systems

External DMZ/
Email, Web Services Firewall

«  Security Services - Active Directory (AD), Identity Services (AAA)

+ Network Services— DNS, DHCP Enterprise Zone
« Call Manager
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[1] https://www.rockwellautomation.com/en-us/capabilities/industrial-networks/design-guides.html




Single (Simple) Networks e},
* Basic definition: G = (V,E, A).
* Optional:

Directed Weighted ? Plain Homogeneous
/undirected /unweighted é /attributed /heterogeneous
* Local characteristics: ; 4o
* Node: indecomposable, single entity /
* Edge: single, pairwise, node-node relationship ol ; Lo WS
. . 10"1 —0.99176x + (3.1572) =y
* Global characteristics:

CANDIDATES (COM2CAND)
KERRY, JOHN F*‘

 Statistical properties: degree distribution, centrality, etc. «

SNYDER,
(]

* Limitations: /

ight

* Node-network, network-network relationship
4 RUSSO, —1.0877x + (3.1478) = y
* High-order node relationship K ;O;mbe,ofedg:s;(
» Node relationship across multiple networks Different structural distribution

E [1] Akoglu, Leman, Mary McGlohon, and Christos Faloutsos. "Oddball: Spotting anomalies in weighted

graphs.” Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Berlin, Heidelberg,
2010.




Multi-networks T

* Motivation:

* How to represent complex real-world data as network models?
* How to handle the limitations of single & regular networks?
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 And many more...

[1] Zhang, Xi, et al. "Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson’s
disease." AMIA Annual Symposium Proceedings. Vol. 2018. American Medical Informatics Association, 2018.

[2] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on hypergraphs.” arXiv
preprint arXiv:1809.02589 (2018).
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Multi-network Mining Challenges-

* C1. Data challenge
* Multi-network data models are more complex

* C2. Algorithmic challenge
* How to solve the multi-network mining problems?

* C3. Application challenge
* How to empower or enable multi-network applications?



C1. Multi-networks Are Complex

* Volume: the number of nodes/edges is large

* Example:
* User identity alighnment/matching: search several social networks

2.7 billion users 756 million users

199 million users 478 million users

[1]Zhang, Si, and Hanghang Tong. "Network Alignment: Recent Advances and Future Directions." Proceedings of the 29th ACM
International Conference on Information & Knowledge Management. 2020.

[2] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)




C1. Multi-networks Are Complex (cont’d) |

* Variety: the structure is complicated
* Example:

* Interdependent infrastructure network

Water for cooling
= =~

Each domain has a
different network

Water for cooling -
N .
. Power for switches
/ !
\
/7 \ \
I\ - \
Water for production
and cooling SCADA, communications
~
\

\
\
1
\

Nodes from different
Power f;)r switches l| Shil}ping d O m a i n S a re d e p e n d e nt
and signaling ', 1

Domain network and inter-network
dependence are attributed

[1] C. Chen, J. He, N. Bliss and H. Tong: “Towards Optimal Connectivity on Multi-layered Networks”. IEEE Trans. Knowl. Data Eng.,
29(10): 2332-2346 (2017)

(2014): 346-356.

[2] Gao, Jianxi, Daging Li, and Shlomo Havlin. "From a single network to a network of networks." National Science Review 1.3

-11 -



C1. Multi-networks Are Complex (cont’d) {2}

* Velocity: multi-networks are changing dynamically
* Example:

2.4 billicn users

¥ " a s k4

7- 139 miII‘ion users 186 millidn users

2019 2020 year

[1] Sun, Li, et al. "Dna: Dynamic social network alignment." 2019 IEEE International Conference on Big Data (Big Data).
IEEE, 20109.

[2] Vijayan, Vipin, Dominic Critchlow, and Tijana Milenkovi€. "Alignment of dynamic networks." Bioinformatics 33.14 (2017): _-12 -
i1180-i189.




C1. Multi-networks Are Complex (cont’d) ZUDLH[
 Veracity: multi-networks are noisy and incomplete

* Example:

A Group 1 Group 2 Group 1 Group 2

Tilak Nath
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A 4
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Thank you Jogial for changing my life.
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Fake reviews BEoEE -

' A Great opportunity to earn lifetime...
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C Emotional Interactions

Foursquare Network Twitter Network
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hashtags and so on

M. . I k = [ linkl
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- link2
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_- News feeds
+ Like buttons and * Notifications

+ Personalization comment sections

+ Information updating, * Review, rating or
savina or postina votina svstems

[1] Zhang, Jiawei, Bowen Dong, and S. Yu Philip. "Fakedetector: Effective fake news detection with deep diffusive neural
E network." 2020 IEEE 36th International Conference on Data Engineering (ICDE). |EEE, 2020.

[2] Al Hasan, Mohammad, and Mohammed J. Zaki. "A survey of link prediction in social networks." Social network data analytics.
Springer, Boston, MA, 2011. 243-275.




C2: Algorithmic Challenge - Prob. Formulation <]

* How to encode multi-network structure/features?

* Examples:

e Multi-network alignment (cross-network node mapping):
* Encode topological similarities
* Encode node/edge attribute similarities

* Hypergraph link prediction (high-order node relationship):
* Learn topological similarities of high-order objects
e Learn attribute similarities of high-order objects
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[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)

E [2] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks in adjacency space." In Thirty-
Second AAAI Conference on Artificial Intelligence. 2018. -14 -
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C2: Algorithmic Challenge - Complexity M|

* How to handle high time/space complexity?

* Example:

* Multi-network association (cross-network node proximity):

Gl GZ
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Sijk Gy
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IsoRank:
Time: O (#iter x (m?+n?))
Space: 0(n?)

Fixed-point iteration:
Time: O (#iter x (m3+n3))
Space: 0(n?)

[1] Bahmani, Bahman, Abdur Chowdhury, and Ashish Goel. "Fast incremental and personalized pagerank." arXiv preprint

arXiv:1006.2880 (2010).

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Pairwise global alignment of protein interaction networks by matching
neighborhood topology." Annual International Conference on Research in Computational Molecular Biology. Springer,

Berlin, Heidelberg, 2007.



C2: Algorithmic Challenge - Computation 3‘@

e Multi-network -> single (simple) network? = may not work!
 Transformation itself is non-trivial

* Information loss
* Potentially increase the complexity

* Examples; < 4

Process each individual network
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C3. Application Challenge ]

* How to empower or enable multi-network applications?

* Example:
e Ranking/clustering on multiple regular networks
* Classification on complex multi-network models

Multi-network clustering Multi-network classification




Multi-Networks: Where Are We? Zlm;n[@
Single (Simple) Networks Beyond a Single Adj. Matrix

HIN [Sun & Han 2012-2020]
Tensor [Faloutsos+ 2008-2019]
HSN [Yu+ 2013-2019]

Multiplex [Kanawati 2015, Porter 2014]

\\\\\\\\\\\

i3

e At Micro-level: Nodé Link asxtom
o—©0

u At Macro-level: Set of Networks Connected by
o Another Network
Key Advantages: Hierarchical Modeling, Towards

9 Multi-Network Model Unification.
©
(4] This Tutorial: Multi-Networks
D acligue (Venug Autnor) Motif: Network: S| N i
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~——— % Part |I: Multi-network Data Models @

:., ++ Part Il: Multi-network Mining Algorithms
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Overview of Part | e},

I N R

Multi-view Multiplex Inter-dependent H h Network of
Network Network Network ypergrap Networks



Network: Definition
 Definition of network
* Basic: § = (V,E,A).
* VV: node set, E: edge set, A : adjacency matrix of the network.
* Optional: node attribute matrix X, edge attribute matrix Y.

1 1 1 €1 0 0| 1 1
1 0 0 e, 1 0 1 1
1 1 0 e 0 11 0
X 0 1 0 "29;:/ v e, 1 0 o0 1
1 0 1 e e 0 1 /1 0
0o 1 1 \\85\ / €6 1 1 0 1
1 0 1 €4 e- 0 1 1 1
0 0 1 /91/ % 6 G e; 1 1 0 o0
10 0 €3 eg 1 1 1 0




o o
Multi-view Network: Definition ™

e A.k.a. multi-relation network, or multi-dimension network

e Definition of multi-view network
* Gi = (V,E, Ay).
* For the same set of nodes, their relations can be formed from
different views/aspects.

* I/: node set, E; and A;: edge set and adjacency matrix of the i-th
view network.

* |t can be represented as a tensor with a size |V| X |V]| X I.

D000 5
v_<v G2

OG-~ 5

[1] Kanawati, Rushed. "Multiplex Network Mining: A Brief Survey." IEEE Intell. Informatics Bull. 16.1 (2015): 24-

27.
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Multi-view Network: Application ?@L

Aircraft flow monitoring from different
airlines in Europe.



T
Multiplex Network: Definition
* Definition of multiplex network
* Gi = (VL E, Ay).
* I/;: nodes for the i-th network, E;: edges for the i-th network.
* A;:thei-th network’s adjacency matrix.
* Vi nV; #@.V; and V; have some common nodes.

* Multi-view network is a special case of multiplex network.

00 %

E [1] Kiveld, Mikko, et al. "Multilayer networks." Journal of complex networks 2.3 (2014): 203-271.
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Multiplex Network: Applications g‘@

looks normal looks normal money laundering?

Fraud detection in the economy domain.

[1] Zhang, Si, and Hanghang Tong. "Network Alignment: Recent Advances and Future Directions." Proceedings of the 29th ACM

E International Conference on Information & Knowledge Management. 2020.



Multiplex Network: Applications ™
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[1] Zhang, Si, and Hanghang Tong. "Network Alignment: Recent Advances and Future Directions." Proceedings of the 29th ACM

E International Conference on Information & Knowledge Management. 2020.




T
Inter-Dependent Network: Definition Lt
* Definition of Inter-dependent network

* gi = (Vi'Ei'Ai)'
« G@ js the graph level dependency matrix.

. Gg-l) = 1: we have a node-level dependency matrix D),

. D,(ff,)lz = 1: the n;-th node in §; depends on the n,-th node in §;.

61

Dependency relation

-
3
_<
\(
I
1

Inner-network
connectivity

[1] Chen Chen, Hanghang Tong, Lei Xie, Lei Ying, and Qing He. 2017. Cross-Dependency Inference in Multi-Layered Networks: A
E Collaborative Filtering Perspective. ACM Trans. Knowl. Discov. Data 11, 4, Article 42 (August 2017), 26 pages.
DOI:https://doi.org/10.1145/3056562




Multi-network Data Model #3

Inter-Dependent Network: Application

Account
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Team Team

Tearp Network Layef
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T e /o — / Disease Network
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EE /—1_ Sensor /

Lym ;‘;_'_Ton.
Information Network Layer

PPl NETWORK
Team recommendation in

Drug discovery in
collaboration platforms.

bio-system.

[1] Chen Chen, Hanghang Tong, Lei Xie, Lei Ying, and Qing He. 2017. Cross-Dependency Inference in Multi-Layered Networks: A

Collaborative Filtering Perspective. ACM Trans. Knowl. Discov. Data 11, 4, Article 42 (August 2017), 26 pages.
DOl:https://doi.org/10.1145/3056562
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T
Hypergraphs: Definition jLu
* Undirected hypergraphs
* Gu = (W, Eyw, Hy).
* I/,: node set, E;: hyperedge set, H,,: incidence matrix.
e Simple undirected network: 1-to-1 relation.
* Undirected hypergraph: n-to-m relation.

* Multi-layered network degenerates to undirected hypergraph:
* Do not have within domain networks

€1 €2 €3
g
|62 veVvVeve

1 1
1 0

e3 & @ L 1 0
v . 1 0

0 1

[1] Klamt, Steffen, Utz-Uwe Haus, and Fabian Theis. "Hypergraphs and cellular networks." PLoS computational biology 5.5

E (2009): e1000385.
-29.-




T
Hypergraphs: Definition Lol
* Directed hypergraphs
* Ga = (Vg Eq, Hy).
* I/;: node set, E;: hyperedge set, H;: incidence matrix.
* Direction between every pair of hyperedge.
* Simple directed network: 1-to-1 directed relation.
e Directed hypergraph: n-to-m directed relation. e, e, e,

-1 -1 0
Directed hyperedges: 1 1 0
l « e;: A>B
c ¢t A+B->C+D 0 1 0
—> e Do FE 0 1 -1
0 0 1

[1] Klamt, Steffen, Utz-Uwe Haus, and Fabian Theis. "Hypergraphs and cellular networks." PLoS computational biology 5.5

E (2009): €1000385.

-30 -




- o
Hypergraphs: Definition Lo

* Heterogeneous hypergraphs:
* Nodes/hyperedges of different types.

e K-uniform hypergraphs:
* Every hyperedge contains K nodes.
* Dynamic hypergraphs
* Time-evolving hypergraphs with changing nodes/hyperedges.

- €,
oS e
—— =L TN = = = —— 2 e
- ~ ~\" v N L €2
e A HY (O | .0 ®6
~+o_ T‘_I_.,'R e M= k - - ‘s +
\ 1\ €2 “LEL @ €1 €11,
€3 a 1\ I | s Y I : : €3
3 )

[1] Klamt, Steffen, Utz-Uwe Haus, and Fabian Theis. "Hypergraphs and cellular networks." PLoS computational biology 5.5
(2009): €1000385.
[2] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

231 -

[3] Jiang, Jianwen, et al. "Dynamic Hypergraph Neural Networks." IJCAI. 2019.



Multi-network Data Model #4

Hypergraph Applications

R4

| & S~ -
| 'R'I "R K3 : R2

Heterogeneous hypergraph in

social networks

Fe directed
HC hyperlink

NaOH
NaCl
I l;()
Fe,04

Na

llg

Directed chemical reaction

- "

.‘. ...

__—'<

o \-_—’

Protein complexes by tandem affinity
purification (TAP) on PPI network

a9 2.9

D=(AAB)V-C

Hypergraph representation

Interaction graph of boolean relationships

Logical networks

[1] Klamt, Steffen, Utz-Uwe Haus, and Fabian Theis. "Hypergraphs and cellular networks." PLoS computational biology 5.5

(2009): €1000385.

[2] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
[3] Li, Dong, et al. "Link prediction in social networks based on hypergraph.” Proceedings of the 22nd International Conference on
World Wide Web. 2013.

32 -



Network of Networks (NoN): Defmltlori

e Definition of NoN:
* Main network: G (™) = {V(m),E(m),A(m)}.
. o d d d d .
* Domain-specific network: {Gi( ) — {Vi( ),Ei( ),A(i )}},l =1..,9.

A \ / .
Domain-specific \ Main network
networklﬁ / \ ‘-—( ‘ / \ !

\ -/ _
\ /
~ - 1, = ™ = " Domain-specific

/ \ network 3
1/ \ 1

Domain-specific
network 2 \ /

El

N\

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining. 2014.




Multi-network Data Model #5

NoN: Applications L

Research Area Network of Co-author Networks

Disease Network of Protein Interaction Networks
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[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining. 2014.



Multi-network Data Model #5

NoN: Applications



https://phys.org/news/2014-12-scientists-worldwide-network-networks.html
https://www.chrisharrison.net/index.php/Visualizations/InternetMap

Summary: Multi-layered Networks i}

* General definition
* Basic definition: G; = (V;, E;, A;) is the i-th layer network.
* Optional designs:
* Node set: V;, V; can have overlap nodes.
* Multi-view network: V; =V}, forany i, j.
* Multiplex network: V; n'V; + 0.
* Inter-dependent network: V; N V; = @.
* Graph level cross-layer relation.
e Multi-view network: no relation.

* Inter-dependent network: dependency relation.
* NoN: association relation.
* Node level cross-layer relation.
* Multi-view network, Hypergraph: alignment.
* Inter-dependent network: dependency relation.
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Overview of Part |l

ST T T T ]

. Multi- Multi-
g as Hyperlink . .
Classification e . network Ranking Clustering network
prediction . .. .
association embedding
* Label NMF-based Label Consistency Multi-view MF-based
propagation- method propagation- based network embedding
based multi- Autoencoder based method homogeneous clustering Random
view/domain -based w/o attribute Consistency NoN walk-based
classification embedding w/ attribute based clustering embedding
*  GNN-based GNN-based Dependency heterogeneous GNN-based
embedding embedding inference embedding
*  Contrastive Network
learning for alignment

multi-view




Preliminaries: Label Propagation for Graph- ifm
based Semi-supervised Learning (GSSL) =
* Given:
* Aninput data set with N instances {x1, ..., X;, X{41, -, XN}
* {xq1, ..., x;}: labeled as {y4, ..., vi}; {x141, ..., Xy }: unlabeled (y; 41, ..., yy = 0)

* Qutput: e Similar formulation: SimRank
e The predicted labels for {xl+1» ) xN} * [Intuition: how soon two random

surfers (i, j) are expected to meet
* General method of GSSL:
* Undirected, connected and weighted %’raph G = VEA

mm zA(l j)(fl f]) +/12(fl Vi)?

lij=1

mFin tr(FTLF) + Al|F = Y||% » Matrix form w/ multi-class

* Notation:
* F: predicted label matrix; Y: groundtruth label matrix
* L: graph Laplacian;

E [1] Wu, Jia, et al. "Bag constrained structure pattern mining for multi-graph classification." IEEE transactions

on knowledge and data engineering 26.10 (2014): 2382-2396.




MCS: Multidomain Classification i
With Domain Selection

* Goal: improve multidomain classification; select relevant domains

* Given:
* Gm = (Vm Em Ap) withm = 1,...,M,A,, € RVNn*Nm
* Target domain m, and labeled nodes from all domains

p E RNTTLXNTI’L’ )

* Cross-domain relations: {Smm } (Smm

m’ =1lm+m

° Output: Multi-view networks can
have different node set

* The unlabeled nodes from target domain m

¢
i

0O 0 0 0 01 0 1

00 0 00 0 1T ————— Cross-domain Relationships
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[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain

E selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.




MCS: Key ldeas

* Intuition:

* S,,m’ enables cross-domain label propagation

* Label consistency in target domain m
* Label consistency in transferred labels from target domain

Mathematically:

* XA GL)) ([sm,,m f]. — [Smim f]j)2 should be small

 f:a node label vector of m-th domain
S m f: label estimation of the corresponding nodes in the m’-th domain

[ 0O 100 0 0
] 100000
o

il ) e Y\ »Label consistency

e 101100 y —_ s .

:" 0 1 0 1 0o 0 /

N2 g & 5 “7lo 11000 $ b ) > S Ta rget doma|n
0o 0 0 0 1 0

[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain
E selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.




MCS: Formulation ?@L

e Objective function:
M

min fTme i Z f“m’fTLm’,mf + l”f - )’”% T ) ||W||%

f.w
m'=1,m"#n
Consistency of Label consistency of Label regularizer
target domain other domains
M
E W, =1, w, = 0.
m'=1,m'£m Transformed adjacency
matrix from domain m’
L DS,”_,”/A,”/S,”/J” |Sm.m’Am’Sm’.ml
L m',m — o K. CE . Tl . I
||DSmJ”/ I Sm,m’Am’Sm’.mHF : Scaled graph LapIaCIan

m m.m

* W,,,: other domains’ contributes to the label estimation in the
m-th domain

e A, v: weights for regularizers

[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain

selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.




MCS: Algorithm ]

. Time complexity:
* Decompose into two subproblems O(iter * (E + M?))

* S1. Instance-prediction subproblem for instance label vector

~1
M
f =/ d)hl + L, + z W' Lim’ m y.

m'=1,m'#m

* S2. Domain-weighting subproblem for domain weights

Tw+y11wl13

min v
w
s.t. wil= I,w>0
Where v = [V, ..., Uy ] W/O Uy, ¥1 S v < -+ S Uy, Uy = FTL 1 f
e Solution: 0—vy .
m < P 2y + 2.1 Vi

Wy = 2y 0 = -
0 m > P min{P, M — 1}

P = argmax(f — v, > 0).
m’

E [1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain

selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.




MCS: Experiments

e Dataset: cancer subtype classification problem

Domain Platform Sample Type Size
g1 UNC_IlluminaHiSeq_RNASeq Normal/LUAD/LUSC 403
Go BCGSC_IlluminaGA_miRNASeq LUAD/LUSC 199
s BCGSC__IlluminaHiSeq_miRNASeq | Normal/LUAD/LUSC 891
Ga JHU_USC__HumanMethylation27 Normal/LUAD/LUSC 311
Us JHU_USC__HumanMethylation450 Normal/LUAD/LUSC 919
. TP + TN
* Target domain: G4 R = P INT PPN
Focused | Label |\ p0oe SSC CGC MCA PSC
Domain Rate
10% RI 0.6311 [}.652] 0.7139 0.6829 0.7298
Acc 0.3671 0.4479 0.6164 0.5426 0.6482
91 15% RI 0.6369 | 0.6421] 0.7139 | 0.7014 0.7694
) Acc 0.3909 | 04113 | 0.6164 | 0.5888 0.7155
20% RI 0.6512 | 0.6721 0.7139 | 0.7288 0.7872
Acc 0.4447 0.5122 0.6164 0.6463 0.7421
259 RI 0.6802 0.7115 0.7139 0.7437 0.7959
i Acc 0.5352 0.6113 0.6164 0.6734 0.7546

* QOutperforms all baselines in other domains as well

selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.

E [1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain




MCS: Experiments

* Synthetic data, domain selection evaluation

label rate=10%

0,08

.06 -

0.04 |-

0,02 F

Average Opiimal Weight of Domain

——

15 20 25 30

Domain
label rate=0%
. v .

Average Opfimal Weight of Domain

8] 5 10 15 20 25 30
Domain

* Able to select relevant domains with the proposed formulation

selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.

E [1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain




MCS: Relation with Other Methods

 SMGI: Multi-graph label propagation by sparse integration:

M
min f7 L, £ 1 21 11f — 113 + 221|113
o ZI Hm m ] sz 2”! ||2
m=

st. ul=1,u>0 u: selecting domains

e Co-regularized Multidomain Graph Clustering (CGC) With
Focused Domain:

min ||A,, — H,HD |13 + A1 |[H, — yI15 + A2l |zl

ms

M
+ 1S o S Ho) T —HHY 117
lum || m,m m m,m m ) m |||[<

m

m'=1,m'#m

S.L Hm > (), U2 0, 1“1 = 1 NMF approaCh

[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain selection." IEEE transactions
on neural networks and learning systems 30.1 (2018): 269-283.

[2] M. Karasuyama and H. Mamitsuka, “Multiple graph label propagation by sparse integration,” IEEE Trans. Neural Netw. Learn. Syst., 2013
[3] W. Cheng, Z. Guo, X. Zhang, and W. Wang,“CGC: A flexible and robust approach to integrating co-regularized multi-domain graph for
clustering,” Trans. Knowl. Discovery Data, vol. 10, no. 4, 2015, Art. no. 46.




MVGL: Multi-View Graph Learning leDc_ﬂ»

* Motivation:
* There exists a unified latent graph for all views
 Jointly learn the latent graph with classification

* Challenges:
* C1. How to construct a robust graph from multiple views?
e C2. How to ensure the sparsity of graph construction?
* C3. How to integrate label propagatlon with graph construction?

----------------------------------------------------------------------------------

Multi-View Data Label Propagation :
(e e @
* L x| O s
ks }. 4 E

5 View 1 (LBP)  View 2 (HOG)  View 3 (GIST) :: .

____________________________________________________________________________________

N Joint Learning ‘f

Shared Latent Factor

[1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation.” 2017 IEEE International
E Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive

label propagation.” 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017 ..



MVGL: Problem Definition b},

* Given:
« X = {X™} v = 1,--,V:amulti-view dataset

e Remarks:

* N samples in each view, X) = { W) @ @y (”)} c RAWIXN

Xy X
* The first [ samples in each view are labeled
* d(v) is the dimension of samples in the v-th view

* Qutput:

* The labels for the unlabeled samples

E [1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation.” 2017 IEEE International

Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive
label propagation.” 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017 ..




MVGL: Key Ideas Eil

* C1. How to construct a robust graph from multiple views?

* Learn shared latent factors from all the views
* Build a common graph based on the shared factors
* These factors are view-independent features

e C2. How to ensure the sparsity of the graph?
* Sparse constraint based on k-NN is incorporated to the model

* C3. How to integrate label propagation with graph
construction process?

* Joint learning framework to integrate graph construction and
label propagation.

E [1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation.” 2017 IEEE International

Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive
label propagation.” 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017 ..




MVGL: Formulation T

V
. 2 2
o ing 2 “x(") —UUR”F A[IWI| |~\
v=1

Feature decomposition

5

> Graph construction
‘ +/12tT(FTLF) + ]/| Y — F| |F_" and sparsification
Adaptive label propagationL =D — W /
v ' /
2 2 /
0 [10,1[7 + [IRI[) /
/4
v=1 /

Regularizer /

‘S.t. W=S @ (B,TR),Z?I Sl] :&i(;sii =0 r

K-NN selection

E [1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation.” 2017 IEEE International

Sparsification constraint; R: latent

representation shared by all views

Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive
label propagation.” 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017..




MVGL: Experiments

* Node classification on online news dataset (BBC, Reuters, The Guardian):

* Nodes: articles, labels: topic classes

# of labeled samples randomly chosen from each class

Method Nir = 1 Nip:= 2 Nir = 3 N =4 Nir = 5 N¢r = 6
LGC-V1 [9] 74.625.77 | 76.98+4.78 | 79.383.64 | 82.48+3.34 | 84.644+3.53 | 86.41x2.71
SV LGC-V2 [9] 69.68+4.78 | 74.214£3.01 | 75.634+£4.91 | 78.72+5.25 | 80.58+5.01 | 81.00£5.11
LGC-V3 [9] 74.79+5.19 | 75.314+2.87 | 81.01+£3.79 | 82.73+2.93 | 83.82+3.60 | 84.77+L3.57
FeaFusion 79.60£5.82 | 79.10+t4.44 | 82.45+3.79 | 86.054+2.96 | 88.724+2.72 | 90.17+1.68
GraphFusion 78.60+5.42 | 81.3245.20 | 83.84+3.37 | 86.95+3.39 | 88.56+3.66 | 90.90+3.19
MV simpleMKL [21] [ 59.5145.67 | 62.61£9.20 | 70.07£8.46 | 77.31+£3.58 | 79.64+1.44 | 81.95+2.81
MvDA [22 35.344+4.27 | 57.074+7.85 | 67.55£7.11 | 74.62+6.64 | 80.86+3.51 | 82.63+4.03
MUDA [23] 35.77+4.62 | 59.214+7.23 | 68.65+5.93 | 77.32+6.10 | 82.16+3.27 | 84.55+3.92
MVGL (Ours) 84.27+3.77 | 85.65+4.64 | 87.74+3.90 | 89.314+2.77 | 90.14+t4.39 | 91.86£1.69

e Multi-view methods like FeaFusion and GraphFusion usually perform better than

single-view methods

* The proposed MVGL approach outperforms the single-view and multi-view

I

baselines when there are very limited information

[1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation.” 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive

label propagation.” 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017..




Overview of Part |l

P

. Multi- Multi-
g as Hyperlink . .
Classification e . network Ranking Clustering network
prediction . .. .
association embedding
e Label NMF-based *  Label Consistency Multi-view MF-based
propagation- method propagation- based network embedding
based multi- Autoencoder based method homogeneous clustering Random
view/domain -based *  wj/o attribute Consistency NoN walk-based
classification embedding * w/ attribute based clustering embedding
*  GNN-based GNN-based *  Dependency heterogeneous GNN-based
embedding embedding inference embedding
*  Contrastive *  Network
learning for alignment

multi-view




Multi-GCN: Graph Convolutional BT
Networks for Multi-View Networks |

* Motivation:
* Graph Neural Networks prevail in many graph learning problems
* Latent subspace-based method performs well in multi-view tasks

* Key questions:
* How to apply GNN techniques to multi-view networks?
* How to construct a latent subspace shared by multiple views?

* Key ideas:
* Merge subspace representations of multiple views
* Graph-based manifold ranking for latent network generation
* Learn classification task by GNNs on latent network

[1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view

networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No.
01. 2019.




Multi-GCN: Overview

e of-o - O
e e~ —o
--------- T ¢ oo
e— 0 ~
é 6— o @
_-___f)__.(;-_fe ..... Merged graph
= - o . (Centroids in black,
v | Multi-view fusion salient edges in blue,

7]
other edges in orange

‘ Manifold ranking
d\v/ﬁ\" - gig_’g
ol O

=, ¢ S 2 T
e O ST

Multi-view graph
G=((V.EI1).(V.E2),(V.E3))

a;qf/"\o - Input to GCN Rank-augmented graph
7 and node features

Graph Convolution Network (after adding salient

Hidden layers— Dense layers edges, pruning others)

[1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view

E networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No.
01. 2019.




Multi-GCN: Preliminaries ?@

* Grassman manifold:
* A set of k-dimensional linear subspaces in
* Each unique subspace is mapped to a unique point on manifold
* Points on the manifold are represented by orthonormal matrix

Rnxk

* Projection distance between two subspaces Y3, Y5[2]:

* dpo (Y, Y2) = By sin® 6; = k — tr(Y{ V1)

Collection of several subspaces

3
mu AL
ms L 5_2_553__&___-——-'7- - m8 A

pm—

Domain 2

Unlabeled data
m Domaim 2

Domain | 82 3
Labeled data

m Domam 1

EEE
AAA

Grassmann manifold

[1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view networks, with
applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01. 2019.

[2] Dong, Xiaowen, et al. "Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds." IEEE Transactions on signal
processing 62.4 (2013): 905-918.




Multi-GCN: Model o)

* Merge subspace representations:

* Step 1: min tr(U;L;U;) st. U/ U; =1
U;eR*k

Where L; = D; /?(D; — W;)D; */?

. Step 2: mﬂg,ﬁlx YiLy tr(UTLU) Ha;[kM — tr(UUTU,UD)] |

s.t. U/ U; =1
* Solution: the first k eigenvectors of modified Laplacian;

— \\M T
Lmod — 4i=1 Li 1—1 alU Uj
4]

p . . L-?fe Clustering

8 e a 9% —o
o—"— 0 R

i g W i Merged graph

= Multi-view fusion (Centroids in black,

A salient edges in blue,

other edges in orange

networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No.
01. 2019.

E [1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view




Multi-GCN: Model (cont’d) ]

* Graph-Based Manifold Ranking

e Closed form solution: f* = (I — SL.,,4) " 1q

* Adding salient edges

* Pruning non-salient edges

* Input the modified and augmented graph to GNN

« Complexity: O(MN® + MN*K + N%C?% + tN)
 M: # of views; N: # of nodes per view; K,C: small constants

T 5

et |

Merged graph

b

- :.':E -

I IR
-

.g =0 #®o© &=

Rank-augmented graph

(Centroids in black, Manifold ranking and node features
salient edges in blue, (after adding salient
other edges in orange edges, pruning others)

networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No.
01. 2019.

E [1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view




Multi-GCN: Experiments

* Classification accuracy on mobile phone data:

Dataset Data Type Nodes Edges Edges Classes Features Label Rate
(view 1) (view 2)

Product Adoption  Phone logs (West Africa) 17,000 23,032 18,371 2 132 0.002

Poverty Prediction  Phone logs (East Africa) 422 544 1,799 2 1,709 0.094

Gender Prediction ~ Phone logs (South Asia) 958 992 978 2 821 0.042
Method Product Adoption Poverty Prediction Gender Prediction
DeepWalk (first view) 56.43+0.187 51.91+0.62 53.18+ 0.55
DeepWalk (second view) 51.97+0.112 50.34+0.36 50.84+0.64
DeepWalk (view union) 56.81+0.114 50.87+0.95 52.34+0.50
Node2vec (first view) 53.87+0.20 52.26+0.58 50.12+ 0.40
Node2vec (second view) 50.50+0.11 49.70+0.23 51.68+0.40
Node2vec (view union) 54.50+0.11 50.52+0.63 51.64+0.53
LINE (first view) 51.114+0.01 50.154+0.02 51.564 0.001
LINE (second view) 50.83+0.01 52.2940.001 50.004+0.001
LINE (view union) 56.26+0.003 50.1840.001 51.33+0.002
GCN (first view) 70.7442.2 55.194£2.33 63.97+ 1.29
GCN (second view) 71.40+1.81 50.06£0.81 63.01+0.013

GCN (view union) 71.904+0.9 50.22+0.56 63.90+1.32
I Multi-GCN (this paper) 73.47+0.91 59.23+0.20 66.34+ 1.03 I

* Multi-GCN outperforms existing state-of-the-art benchmarks

networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No.
01. 2019.

E [1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view




Multi-GCN: Experiments ?@

* Classification accuracy on citation networks:

Predefined train-test splits

Method Citeseer Cora
ManiReg (first view) - Yang, Cohen, and Salakhutdinov (2016) 60.1 59.5
DeepWalk (first view) - Perozzi, Al-Rfou, and Skiena (2014) 43.2 67.2
Planetoid (first view) - Yang, Cohen, and Salakhutdinov (2016) 64.7 187
GCN (first view) 70.3 81.5
GCN (second view) 50.7 53.6

N (view union) 70.7 04
Multi-GCN (this paper) 71.3 82.5

Randomized train-test splits

GCN (first view) 679+ 0.5 80.1+0.5

GCN (second view) 53.61+0.1 56.91+0.3

1 nnion ) A7 04+ 3 TR S4-() |
[Multi-GCN (this paper) 70.5+ 0.2 81.1+0.2 |

* Multi-GCN outperforms existing representative benchmarks




Overview of Part |l
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Contrastive Multi-View g‘@
Representation Learning on Graphs —

* Motivation
* Multi-view visual representation learning: image classification [1]
e Data augmentations for multiple views: for contrastive learning [2]

Orlgmal Crop and resize /17\ /—\ /—\ /fT\
) b b

&A

’ eV
chlhall v2 € V2 v3 € V3 vy €V Unm n(hm view
: Bl v : Matching views
Rotate Cutout Multi-view representation learning for image

* Q: How to apply these techniques to graph representation?

[1] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning of visual
representations. arXiv preprint arXiv:2002.05709, 2020

[2] Tian, Yonglong, Dilip Krishnan, and Phillip Isola. "Contrastive multiview coding." Computer Vision—ECCV 2020: 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XI 16. Springer International Publishing,
2020.




Key Ideas L)

e Structural augmentation mechanism:
* Transform a sample graph into a correlated view
e Sub-sample from all views

* Node and graph representation:
* One GNN model for each view for node representation
e Shared MLP layer for graph representation

* A discriminator to contrastive learning

* Contrast node representation of one view w/ graph
representation of another view

~— ~ N

\2_\/ /N
.+ = + E
/[7 \\ _7/ Graph Node

representation representation

[1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on

graphs." International Conference on Machine Learning. PMLR, 2020.




Model Overview

|
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/ l/ \/ o 7/ | GNN | | MLP foolo|< \7 ) .| MLP | | Pool
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[1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on
graphs." International Conference on Machine Learning. PMLR, 2020.

I




Training Details o)

e |deas:

* Maximize the MI between two views using deep InfoMax [2]
* Simultaneously encode local (adjacency matrix) & global info. (diffusion matrix)

* Objective function:

lg|

()lilfk)\l g| q; (l| Z ’}VI[ he hq |+ MI (h )]

\
A
Number of V|ews Number of nodes Implemented by
. . ﬁ B
in each graph view (hf‘, hg) =< h¥, hg

* Representation inference:

* Graph: h = hg + hg, node: H = H* + HF
* Negative sampling:

 Random feature permutation

* Adjacency matrix corruption

E [1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on

graphs." International Conference on Machine Learning. PMLR, 2020.
[2] Velickovic, Petar, et al. "Deep Graph Infomax." ICLR (Poster) 2.3 (2019): 4.




I

Experiments

* Node classification accuracy for supervised and
unsupervised models:

METHOD INPUT CORA CITESEER PUBMED
MLP (VELICKOVIC ET AL., 2018) X, Y 55.1 46.5 71.4
ICA (LU & GETOOR, 2003) A Y 75.1 69.1 73.9
LP (ZHU ET AL., 2003) A; Y 68.0 45.3 63.0
2 MANIREG (BELKIN ET AL., 2006) X,A, Y 595 60.1 70.7
£ SEMIEMB (WESTON ET AL., 2012) y W, | 59.0 59.6 71.7
~ PLANETOID (YANG ET AL., 2016) X,Y 75.7 64.7 77.2
& CHEBYSHEV (DEFFERRARD ET AL.,2016) X,A,Y 81.2 69.8 74.4
» GCN (KIPF & WELLING, 2017) X,A,Y 815 70.3 79.0
MONET (MONTI ET AL., 2017) XA Y 8LT7XE05 — 78.8 + 0.3
JKNET (XU ET AL., 2018) X, A, Y 827+04 73.01+L085 77.9+04
GAT (VELICKOVIC ET AL., 2018) X.AY 83007 7125107 79903
A LINEAR (VELICKOVIC ET AL., 2019) X 47.9+04 493+0.2 69.1+0.3
2 DEEPWALK (PEROZZI ET AL., 2014) X, A 70.7 £ 0.6 )
> GAE (KIPF & WELLING, 2016) X, A 71.5 + 0.4 Better than supervised
@ VERSE (T.SV‘I’I‘SUL’IN ET AL., 2018) X.5:A T725x03 methods!
= DGI (VELICKOVIC ET AL., 2019) X, A 82.3 + 0.6 ===¢ P
z DGI (VELICKOVIC ET AL., 2019) X. S 83.84+ 0.5 7206 77.940.3
= |OuRrs X,S,A 86.8+0.5 73.3+0.5 80.1+0.7

[1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on

graphs." International Conference on Machine Learning. PMLR, 2020.




Experiments bedl

* Node/graph classification accuracy:

Node Graph
CORA CITESEER PUBMED | MUTAG PTC-MR IMDB-BIN IMDB-MULTI REDDIT-BIN
e NCE 83.81+L0.7 733105 80.110.7|822+L3.2 546235 73705 508+L08 79.7+22
& JISD 86.7+0.6 729+06 794+£t1.0|89.7+1.1 625+1.7 74.21+0.7 51105 84.5+0.6
= NT-XENT 868 +05 729+0.6 79.3+08|754+7.8 51.2+3.3 63.6+4.2 504+0.6 82.0%1.1
= DV 854+06 73,3£0.5 7891+:0.8|834+£1.9 56.7+£25 72.5+£08 51.1+085 763+56
» I_LOCAL-GLOBAL 868105 73.31+05 80.1+0.7)| 89.7+1.1 6251+1.7 742+0.7 511105 84.510.6
g GLOBAL — — - 83.4x 2.8 56.0x2.1 7/2.4x04 4Y./x0.8 30.8 = 1.8
© MULTI-SCALE 83.21+09 635+15 75.7x+1.1 |88.0+08 56.6+1.8 72.7+04 50.6+0.5 82.8 £ 0.6
2 HYBRID ~ - - 86.1 1.7 56.1%+ 14 13312 496+06 78.2x472
ENSEMBLE 86.2+0.6 73.3+05 79.7+09|825+19 540+3.0 73.0+04 4991+09 814+1.8
| ADJ-PPR 86.8 +0.5 73.3+0.5 80.1+0.7)|89.7+1.1 62.5+1.7 74.2+0.7 51.14+0.5 _ 84.5 + 0.6 I

v ADI-HEAT 864105 71.8+035 77.2x12|1850+1.9 55.8x11 728035 500+06 81.6:10.9
E ADJ-DIST 845106 72.7x0.7 T46x1.4)| 871110 58.7+22 720+£0.7 50.7+06 81.8x+0.7
S PPR-HEAT 85: 8035 729095 781 =09 |87.7*1.2 57.6x16 7122F+0/6 812%0.8 823x10
PPR-DIST 85905 732+04 747x12 87110 600x25 72414 51.1+08 825=x1.1
HEAT-DIST 85.2+04 70407 72.8x0.7 | 87412 58.6%x1.7 72206 350.5+*0.5 80.3 £ 0.6

* Contrasting local-global outperforms other methods

* Contrasting encodings from adjacency and PPR views performs
better

E [1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on

graphs." International Conference on Machine Learning. PMLR, 2020.




Overview of Part |l

[

. Multi- Multi-
g as Hyperlink . .
Classification e . network Ranking Clustering network
prediction . .. .
association embedding
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*  GNN-based *  GNN-based *  Dependency heterogeneous *  GNN-based
embedding embedding inference embedding
*  Contrastive *  Network
learning for alignment
multi-view




Background: Hyperlink Prediction 5@»

* Problem settings:

* Transductive setting:
e Given: a tuple (H, D), where H = (V,E) is an incomplete hypernetwork
* Dis a set of candidate hyperlinks
* Find: the most likely hyperlinks that are missing from H from D

* |Inductive setting:
* Given: H=(V,E) is a given incomplete hypernetwork
* Find: the the most likely hyperlinks that are missing from H from D
* Dis only seen when testing

Transductive Inductive Testing:
trainingand . \ training:
testing: 1AR 1€5 Ir_"- _____ ) Unlabeled
e r;- S [ U — 7 |\ _y__+= P I
1: €1, €- \ _ , Labeled
|




CMM: Coordinated Matrix Minimization %ﬂ@gﬂ»

* Problem definition (transductive setting):
* Given H = (V,E), incidence matrix: S
* Find true hyperlinks in candidate set D (incidence matrix: U)

* Observation:
 Given incidence matrix S = {0,1} € R™*™:
e Hyperlink s (a column vector S) -> ssT vertex adjacency space
* Abundant existing link prediction techniques for pairwise relation

* Key ldeas:
* Infer the pairwise relationships in the adjacency space
* Find the missing hyperlinks through constrained optimization
* Two-step EM style optimization method

E [1] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks

in adjacency space." In Thirty-Second AAAI Conference on Atrtificial Intelligence. 2018.




CMM: Formulation

* Objective function:

min ||A + UAUT 4+ WWT||2

AW
Subject/tgxli e{0,1},i=1,..,m

W=0

Complete
incidence [S,AS][S,AS]T=A + AA~
matrix

>

* E step (fix W):

AA = UAUT

A =diag([A1, o Ay D

indicator matrix for columns of U

A; = 1: hyperlink u; is a column in AS
A; = 0: otherwise

* min ||A + UAUT — WWT||4, Subjectto 4; € {0,1},i = 1, ...,m’

* M step (fix A):

* min ||A + UAUT — WWT||4, Subjectto W = 0

[1] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks

E in adjacency space." In Thirty-Second AAAI Conference on Atrtificial Intelligence. 2018.




CMM: Algorithm

Output predictions

{

- 0O=-= =000
O= 00 =0 =
COoO-00 =0
= T S S — ™ S
O = OO0 = i
O- 0000 -
- 00 -0 =0
- OoO-0000
O=0 =0 =0
OO =0 =0 =
OO0 = - - 00
-0 -0 -00
- 0000 -0

S [ AS )
11001100000
00101010100
01011000001 )
10100011010 [
10100101000
00100000110
00010000000
e —

1212 W = 0 initially
2 2
2 1 1
12 32
S a1 M: Fix A
2 1 21 Update W
yor | /r "r'I
Updating details:

0.9 0.6 0.9 06
0.3 1.1 0.3 1.1
1.0 0.5 1.0 0.5
08 1.2 08 1.2
0.7 1.0 0.7 1.0
0.1 11 0.1 1.1
0.8 0.0 0.8 0.0
—— —

090.31.0080.70.10.8
0.61.1051.11.01.10.0

e
o —————————
1.2091.2141.2080.7
09130916131.202
1.20913141.20.708
1416 1420181406
1.2131.218151.206
08120.7141.21.20.1
0.7 0.2 0.8 0.6 0.6 0.1 0.6

.(' ww' 5

E: Fix W
Udpate A

+ Estep: min||Cx — d||3,s.t.x € {0,1}™ (C = [cy, ..., €,7]T, ¢; = vec(u;ul))
X

M step: Xpew

I

[x — aH™Vf(x)]",x = vec(W), H: Hessian matrix of f(x)

[1] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks
in adjacency space." In Thirty-Second AAAI Conference on Atrtificial Intelligence. 2018.




CMM: Experiments

* Task: Predicting metabolic reactions

* Number of recovered reactions under different numbers of
missing reactions:

— 1401366 _ iAF1260b | IAF692

@ 200 H[H-CMM o [[3-cMm o 1901 3-cmm

ke -$-BS i) -$-BS : kS -$-BS

S SHC S 150 }H-F SHC ¥, 1 8 80 SHC

2 y50}|/-F HPLSF 2 2 HPLSF

2 -¢-FM 2 2 -$-FM

§ {Katz § i § 60T|.§-Katz
8 100 H{FCN g’ -4 8 |FCN " 1
o [**=* Random ®  |[[|=+Random| 1 _ZX.° = @ 40}|*=*Random

- = > = e

o o SO o o'..

% 50 3 E 20r A ZTHE.C

5 5 =

=z P =z

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 25 50 75 100 125 150 175 200

Number of missing reactions Number of missing reactions Number of missing reactions
(a) 1JO1366 dataset. (b) 1AF1260b dataset. (c) 1AF692 dataset.

« CMM generally achieves the best performance

E [1] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks

in adjacency space." In Thirty-Second AAAI Conference on Atrtificial Intelligence. 2018.
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embedding embedding inference embedding
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DHNE: Deep Hyper-Network Embedding 5@)/

 Observations:

* Indecomposablity: the hyperedges are usually indecomposable.

* Nodes in hyperedge have strong relationship # nodes in subset have
a strong relationship.

 Structure Preserving: local and global structure
e Local structures: not sufficient because of network sparsity
* Global structures: use the neighborhood structure

N 7\ T~ \
I iﬂ |E > H/ \ |E *H , ﬂ \‘ User-movie-tag: strong relation
User-tag: not strong

\\\o 0 \,V:\O:’:Q \/' Many missing links

E [1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial
Intelligence. 2018.




DHNE: Key Ideas L

* Indecomposablity issue:
* Indecomposable tuple-wise similarity function
* Defined over all the nodes in a hyperedge
* Tuple-wise similarity function as a deep neural network

* Structure preserving issue:
* Deep autoencoder to learn node representations

e Reconstruct neighborhood structures
* Nodes with similar neighborhood structures -> similar embeddings

_____________________________

. - &»[:j;;"b}"l?_‘:: r:ih;"hl"f!j::---f::hl"hl'-l‘zf::J Proposed tuple-wise

. i .. .
Y SN tuplewise similarit S|m||ar|ty
A U A U
Ao . .
; VRS - © 8 b & Lz\ Comparison with other
) o) A explicit similarity .
B A TND g g g & & & expansion method
ey 7 “ | | ] |
@ A; U, Ly Ay U, Ly

implicit similarity

[1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial

Intelligence. 2018.




DHNE: Model Overview ]

'+ _Node Typea" Node Type b ', Node Type ¢ !
4.4 | (00-00)00-00)00 -00)
First Layer E: auto@coder;: auto@coder:: auto@coderi r second-order
wrtxl| (@00 | @-00) @-08)

Second Layer | \ } / : Non-linear
! ! mapping

i || 0OOO@® 0000
/ Third Layer ' ! uple-wise 11 | first-order
' similarity '
Spe 11 A |
/ 7 ::__________Syper:wsgd_B_lrla_ry_Cp_rrlgqn_em ________ .

|

|

|

|

|

|
Lj = (yf“{ﬂ*xuw( DX WX +b3)) Ly =) " ||sign(Al) (A?— AY)|%

Suk‘\ S Xﬁ Xh Xc ) . (w{]j % L-i_j.ﬂ: + b{i})
L1 = —(Rijr log Sijr + (1 — Riji) log(1 — Siji)) Total loss: £ = L1 + aLlo

E [1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial

Intelligence. 2018.




DHNE: Experiments ]

 Task: link prediction on GPS data ((user, location, activity) relations
are used for building the hypernetwork)
* |eft: ROC curve on GPS; right: Performance for link prediction on networks
of different sparsity
—e— DHNE —i— line(mean) —— node2vec(mean) —4+— SHE(mean) tensor

—*— deepwalk(mean) -4= line(min) === node2vec{min) - 4= SHE(min) —— HEBE
-¥-. deepwalk({min)

1.0 1

= =]
-

True Positive Rate

0.2 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Percentage

* Achieves significant improvements over the baselines

E [1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial

Intelligence. 2018.




DHNE: Experiments

* Hyperlink prediction AUC value:

methods |_GPS | MovieLens | drug | wordnet |
DHNE 0.9166 0.8676 0.9254 | 0.8268
deepwalk | 0.6593 0.7151 0.5822 | 0.5952
— line 0.7795 0.7170 0.7057 | 0.6819
node2vec | 0.5835 0.8211 0.6573 | 0.8003
SHE 0.8687 0.7459 0.5899 | 0.5426
deepwalk | 0.5715 0.6307 0.5493 | 0.5542
_— line 0.7219 0.6265 0.7651 0.6225
: node2vec | 0.5869 0.7675 0.6546 | 0.7985
SHE 0.8078 0.8012 0.6508 | 0.5507
tensor 0.8646 0.7201 0.6470 | 0.6516
HEBE 0.8355 0.7740 0.8191 0.6364

* DHNE outperforms all baselines

I

[1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial

Intelligence. 2018.
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HyperGCN: Graph Convolutional
Networks for Hypergraphs

* Motivation:
* How to apply Graph Convolutional Networks on hypergraphs?

* First trial:
* Apply cligue expansion on each hyperedge -> regular graph
* GNNs for the transformed regular graph
» Disadvantage: 0(n?) edges in each hyperedge of regular graph

* Question:
* How to transform hyperedges to have linear regular edges?

* The proposed method (densest k-subhypergraph ):

Model| Metric — | Training time Density | DBLP | Pubmed
HGNN 170s 337 0.115s 0.019s
FastHyperGCN 143s 352 0.035s | 0.016s

E [1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on

hypergraphs.” arXiv preprint arXiv:1809.02589 (2018).




HyperGCN: Model Details Tm

* 1-HyperGCN:

* |deas:
* Node representations within one hyperedge should be close
» Y.ecz max |[h; — h;||5 should be small » regularizer?
I,jEE

* Select one representative edge for each hyperedge
e Step 1: Find the hypergraph Laplacian with max node difference

* Step 2: Apply GCN on the reduced regular graph
At each epoch:

hypergraph graph
Laplacian operator convolution
» : ’
g (6 (57 7). i =o((6) 3 (a2.4))

LIV} ueN(v)

hyperedges containing node v simple edges containing node v at epoch t

[1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on

hypergraphs.” arXiv preprint arXiv:1809.02589 (2018).




- I
HyperGCN: Model Details (cont’d) |
* HyperGCN: enhanced 1-HyperGCN with mediators:

* 1 edge might be insufficient to represent the whole hyperedge
* Generalized hypergraph Laplacian: the rest of nodes as “mediators”
* Number of edges: 2|e| — 3

* FastHyperGCN:
* Apply the enhanced 1-HyperGCN with initial features
» Use fixed transformed hyperedge in every epoch

7: Comparison of
e

P
two methods: €

I I hypergraph weight on
] 2l z ( ®  each edge is
, O ** O} : o
| C I [‘apla(i"m Ldplacmn ® ]I .
with - :
hyperedge € mediators et

[1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on

hypergraphs.” arXiv preprint arXiv:1809.02589 (2018).



HyperGCN: Experiments

e Results of SSL experiments
* Mean test error + standard deviation (lower is better)

Data Method DBLP Pubmed Cora Cora Citeseer
co-authorship  co-citation  co-authorship  co-citation co-citation
H Cl 54.81 £0.9 52.96 £ 0.8 55.45 + 0.6 64.40 08 70.37£0.3
X MLP 3777 £2.0 30.70 £ 1.6 41.25+1.9 42.14+1.8 4112+ 1.7
H,X MLP+HLR 30.42 £ 2.1 30,18+ 1.5 3487+ 1.8 36,9818 37.75£1.6
H,X HGNN 25.65 £ 2.1 2941 £ 1.5 31.90+19 3241+18 37.40+1.6

4 b f
H, X ] I-HyperGCN 33.87T+24 3008+ 1.5 36.22 + 2.2 34.45 2 2.1 38.87+1.9

H, XI FastHyperGCN  27.34 £+ 2.1 2948 £ 1.6 32.54+18 32.43 8 3742 +1.7
H, X

. X¥ HyperGCN 24.09+20 2556+16 3008+18 3237+%.7" 37.35+1.6
Uses the clique expansion to The graph of HGNN and all methods of this work:
approximate the hypergraph normalized clique expansion when maximum size

of a hyperedge is 3

E [1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on

hypergraphs.” arXiv preprint arXiv:1809.02589 (2018).




HyperGCN: Experiments Tm

* HyperGCN for combinatorial optimization
* Results on the densest k-subhypergraph problem:

* Given a hypergraph (V, E), to find a subset W € V of k nodes
so as to maximize the number of hyperedges contained in V

e Density (higher is better) of the set of vertices: obtained by
each of the proposed approaches for k=3|V|/4

Dataset— Synthetic DBLP Pubmed Cora Cora Citeseer

Approach test set co-authorship | co-citation | co-authorship | co-citation | co-citation

MaxDegree 174 = 50 4840 1306 194 H44 o007

RemoveMinDegree | 147 + 48 7714 7963 450 1369 843
MLP 174 + 56 0030 1206 238 ool 234

MLP + HLR 231 + 46 H821 3462 297 952 764

HGNN 337 £ 49 6274 7865 437 1408 969
-HyperGLN = :

FastHyperGCN

HyperGCN

# hyperedges, | I 500 22535 7963 1072 1579 1079

[1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on

E hypergraphs.” arXiv preprint arXiv:1809.02589 (2018).
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Multi-network Association e},

* Basic problem definition:
* Given:
* K networks {G4, ..., Gk}
* Observed multi-network associations {(iy, ..., ix), ... },i; € Gy, ..., ig € Gg

* Output:
* The values of the rest of unobserved multi-network associations
 Problem variants:

e V1. K networks are heterogeneous (multi-relational associations)
* V2. Observed multi-network associations are pairwise

—9C

1
g a _W Observed
Gy

o~
o~




TOP: Transductive Learning over
Product Graph —

* Problem setting:
* Transductive, cross-graph multi-relational learning (CGRL)

* Key ideas:

* Heterogeneous graph sources -> single homogeneous graph
* Via product graph
* Adv.: Simplify problem formulation

* Adopt a convex formulation and approximation of the CGRL
e Adv.: Ensure robust optimization and efficient computation

e Label propagation over the induced homogeneous graph

* Adv. 1: Enables transductive learning
* Adv. 2: Address label-sparsity by massively available non-observed tuples

E [1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International

Conference on Machine Learning. PMLR, 2016.




TOP: Product Graph

e Task 1: cross-network multi-relation learning

« Given Jgraphs GV, ..., GU) with labeled multi-relations O = {(il,
* Predict labels of the unlabeled multi-relations

* Task 2: label prediction on product graph
* Given product graph P with labeled vertices 0 = {(iy,...,i;)}
* Predict labels of its unlabeled vertices.

| e . B
°o: ' @ i - Heterogeneous graphs

» 3.8 g 1.41.C— 0 4.1.C
by 2.1iA

» LA

a..c
3 3.1:C o 118 > 2.0A

» LILA > '2'||.c

1I.C
5 30 » » 4.1.B

» LIA
.58
> 2.8

4.1LA
» > 4.1.A

[1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International

Conference on Machine Learning. PMLR, 2016.

i)}

5108 5 21c » Single homogeneous graph




TOP: Product Graph (cont'd) [l

e Spectral Graph Product (SGP) operator:
e GivenGD, ... ¢

« P(GD,...,GD)) is defined by the eigen system:
(1) 9) ()
e (A - 20) @ v’}
ll,...,l]
where Kk is a pre-specified nonnegative nondecreasing function over
Agl), ...,AED (eigenvalues for G, ..., GD))
1 2
» Cartesian product graph G¢:

[ J
E.g., * an edge exist iff
SGPType l"‘l:(l\&l t 0 "'A"f-,j' ) [r}’{](il'-"'!.JJJ‘H]"”HJ') ® , R B
. .4 ]
, (4) (4) | '
Tensor HJ- AL-J_ H_,.- G@_j_gj « Tensor product graph G*:
Cartesian Z‘;‘ /\Ej:] Z; (;Ej)‘j, 1_[‘,." #7 5-1'J;:-£;J, * an edge exist iff

SO

E [1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International

Conference on Machine Learning. PMLR, 2016.




TOP: Formulation @

* Objective function:

. Y 9
m to (A1
fERnlip-XnJ O(f) QHfH "

Smoothness consistency

Ranking [,-hinge loss on product graph

2 T —
20 (iy,yif) €O (fz'l...z'J - fi;...ii,)Jr 1f[I%, = vee(f)" 2y vee(f)

O: training set
O: complement of O w.r.t. all
possible multi-relations

Complexity:

* Intuition: 0((Zjn) I1ny)

%)

[1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International
E Conference on Machine Learning. PMLR, 2016.



TOP: Approximation T

* Include only the top-d; eigenvectors in V) for each graph GU)

* Tensor f within the linear span of top H§=1 d; eigenvectors of
the product graph

dy,,dy Tucker decomposition
B Z I /Ul(;JJ-) form
k1, kg=1 j
=ax; VI x, v vi R YA
Original objective function: Approximated objective function:

. min f’@ (f) + —H(yH P

min Lo (f)+ 31 fI%, -

JERTLZ RS _ (1) ()
S.t. f=ax; VW xq---x;V

dl!'”:dJ J\

(8]
2 2 ki, ks
||f||.9‘6H - H"-"'H,@H — § : ()\(1) )\(J))
kiyoonkyg=1 R\ Ak 9eeey A,

[1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International

E Conference on Machine Learning. PMLR, 2016.




TOP: Experiments

* Dataset:

* Enzyme dataset for compound-protein interaction and the DBLP dataset of
scientific publication record

* The heterogeneous types of objects (the circles) and the relational structures

Citation

Structure Similarity Sequence Similarity Coauthorship Shared Foci

‘ ‘ \N}“E/ P("bi'.r'gh
Interact T
Compound Author Altend Venue

 Performance of TOP with different SGPs:

Enzyme DBLP
0.9 T T 1 T T T
D-E - TEnsor - ] ﬂg — —]
07 I Cartesian [ | 08 ]
Name k(z,y) (J=2) k(x,y,z)(J=3) Y Exponential B . |
0.6 [~ Flat [ 7 B n
Tensor Ty TYZ 0.5 |- . 0.6
Cartesian r+y r+y+z 0.4 _ 0.5 - 7
. P Yyztrz - 4 F |
Exponential e eryTyETe 0.3 [ . o
Flat 1 1 03 " |
0.2 |- . oz | i
"L [|] 1 o amn gl
0 0
AUC MAP Hits@5 AUC MAP Hits@5

Conference on Machine Learning. PMLR, 2016.

E [1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International




TOP: Experiments ]

* Performance of different methods on Enzyme
* Based on the quality of inferred target proteins given each compound

0.2 T T A F 0.9 T T _— 35 T T
0.18 e / .............. | 0.85 | ....... } ............................. 4 20 h o “ 3
0.16 o SRR S i) 0.8 B P T -

£ ' / »»//.«L} N ............................................. o
e TR 0.75 /" iy 2

0.12 7 ...................... ...................................... — 0.7 y - A ............... /:L,r""LTKM
0.1 T=femmeeses ........... »»_3_»»_.:7,_-«-:$ 0.65 .-.,; // ........ - NN g— -

MAP
AUC

20

1
Hits@S (°/o)

0.08 W M-l . 0.6 Bt ‘ 1

0.04 05 5
12.5 25 50 100 12.5 25 50 100 12.5 25 50 100

Training Size (%) Training Size (%) Training Size (%)

e Observation: Outperforms all baselines on all metrics
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GT-COPR: Graph-Regularized Tensor gQIDm
Completion from Observed Pairwise Relations ="

* Problem setting:
* Observed multi-network associations are pairwise
* Predict multi-network high-order multi-relational associations

* Limitation of existing work:
* Observed high-order multi-relational associations are sparse
* Do not utilize the observed pairwise multi-network associations

disease network PPl network chemical network

| ‘ ReR=Ssmall cell
roH-Hs Cal . ’ ? A
lung

heoplastg lymphoma £ *,
4 /
i // | /‘

< |
= |
breast neoplasms /ClUCe /
18]
@

/ ® A
///. P

acuté®myeloid T A
leukemia 5

[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical
Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.

[2] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z.
Sayeeda et al., “Drugbank 5.0: a major update to the drugbank database for 2018,” Nucleic acids research, 2017




GT-COPR: Key ldeas O@@

e Learn a compressed tensor in CPD-form*
* Adv.: Space and time efficiencies for learning high-order multi-relations.

* Co-regularize tensor elements with the Laplacian of product graph
e Adv.: Introduce local consistencies among n-way relations

* Tensor collapsing for capturing the cross-mode dependencies
* Adv.: Preserve global consistencies with the observed bipartite relations

unknown ’ |

ulti-relatio

*CANDECOMP/PARAFAC decomposition

E [1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical

Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.




GT-COPR: Formulation 3‘@

* Objective function:

1 1 n .
minimize J = Z =||Ri,; — —=—]collapse(T, i, j Hf)?
(A®): i=1,....n} ot 2 TE: <
1,7 I<I I#I,J
. iy \
+ §vec(7A')TLvec(7A') 1 5 Z I|A®] |3 N N

| =1 4

subject to AW > 0Vi=1,...,n, e Tensor T € RnXIn-1XXIy of

inferred n-way relations is
approximated by rank-K CPD

c 7 —fam) g4(n-1) (1)
Q O @ form 7 = [AM, A=V, 4D]

o « collapse(7, [,]): collapse T into

« Tensor product graph Gt: an edge exist iff i If: matrix by summing over
the slides along corresponding

ﬁ 3 y ’c modes

» Strong product graph G*: the edge exists iff
it is in either G€ or G* L: Laplacian of a product graph

* Cartesian product graph G¢: an edge exist iff

E [1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical

Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.




GT-COPR: Algorithm Overview

product graph regularized

CPD-form representation of
ensor completion

the inferred multi-relations

(I)
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A
::;::f-'/v o _- (II) —‘4-/—1(1) 22
G (3) ] & / disease-gene-chemical relations (I11)
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) \ ~ collapse | || | -
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[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical
E Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019



GT-COPR: Algorithm Details 3‘@

e Derivatives:

djl B Z@( ) Z @}A )

JFi J:kF#i: i<k

+1,1749(C Y el + A9 e,

1, k#i: 3<k JF1

0> = LW AG (@ (AWT A0)Y)) 4 A6 Z\Ij( t)

()A(l JF1 Py
DWAW (@ (AT DU AG))) — W AG) (@ (AT W) A0)))
VED JFi
0Ts — A(i) .
DA M| |WOD|: # of edges

. ' V4 I;: # of nodes
* Time complexity: O( X K\&kHZ(i’k’” + K[W9) | k. # of ranks in

1,k i<k ) )
ero approximation
° . (7)
Space complexity O(M;{JRMHZM [+ KI)) | Ro |+ # of pairwise
S relations

[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical

E Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.




GT-COPR: Experiments

e Task: learning disease-gene-chemical relations
* Fiber-wise evaluation

Dch

Evaluation by gene fibers Evaluation by disease fibers Evaluation by chemical fibers
Methods AUROC | MAP Hits@10 | Hits@5 | AUROC | MAP Hits@10 | Hits@5 | AUROC | MAP Hits@10 | Hits@5
GT-COPR (Cartesian) | 0.9129 0.1878 7 0.3340 0.4T61T | 08741 0.3006 | 0.4337 0.5630 | 0.9749 0.2765 | 0.3651 0.4478 "
GT-COPR (Tensor) 0.9132 0.1928 | 0.3605 0.4027 | 0.8692 0.2842 | 0.4329 0.5460 | 0.9759 0.2797 | 0.3827 0.4399
GT-COPR (Strong) 0.9130 0.1894 |0.3468 0.4192 | 0.8697 0.2829 | 0.4344 0.5489 | 0.9750 0.2759 | 0.3562 0.4463
SNMF 0.8660 0.1604 | 0.2827 0.2864 | 0.7467 0.1463 | 0.2102 0.2481 | 0.9236 0.1097 | 0.1563 0.1877
FASCINATE 0.8978 0.1414 | 0.2579 0.2522 | 0.8378 0.2209 | 0.3310 0.3483 | 0.9704 0.1489 | 0.1535 0.1453
wiZAN-Dual 0.7832 0.1287 | 0.2845 0.2806 | 0.8678 0.2899 | 0.4109 0.5495 | 0.9060 0.1579 | 0.2651 03116
GWNMTF 0.8749 0.0524 | 0.0185 0.0148 | 0.7373 0.0886 | 0.1909 0.1948 | 0.7076 0.0185 | 0.0388 0.0519
GWNMF 0.8924 0.0604 | 0.0753 0.0321 | 0.7359 0.0597 | 0.0876 0.0072 | 0.7241 0.0131 | 0.0081 0.0028

e Slice-wise evaluation

Evaluation by gene slices Evaluation by disease slices Evaluation by chemical slices
Methods AUROC | MAP Hits@10 | Hits@5 | AUROC | MAP Hits@10 | Hits@5 | AUROC | MAP Hits@10 | Hits@5
GT-COPR (Cartesian) | 0.9934 0.0755 | 0.4776 0.6324 | 0.9843 0.0302" | 0.0694 0.0710 [ 09835 [ 0.0463 | 0.2123 | 0.189%0 ||
GT-COPR (Tensor) 0.9945 0.0687 | 0.5223 0.6905 | 0.9853 0.0385 | 0.0935 0.0903 | 0.9708 0.0337 | 0.2123 0.1890
GT-COPR (Strong) 0.9919 0.0802_| 0.4375 0.6905 | 0.9840 0.0303 | 0.0694 0.0710__| 0.9874 0.0392_[ 0.2123 0.1890
SNMF 0.9032 0.0159 | 0.0759 0.0993 | 0.8568 0.0152 | 0.1403 0.1387 | 0.9181 0.0241 | 0.1156 0.1240
FASCINATE 0.9861 0.0223 | 0.0558 0.0182 | 0.8698 0.0159 | 0.0710 0.0613 | 0.9687 0.0155 | 0.0532 0.0474
wiZAN-Dual 0.9642 0.0369 | 0.0339 0.0616 | 0.9198 0.01TT | 0.0903 0.1000 | 0.9435 0.0096 | 0.1146 0.0994
GWNMTF 0.7624 0.0003 | 0 0 0.6646 0.0003 | 0.0032 0.0065 | 0.8645 0.0005 | 0 0
GWNMF 0.7583 0.0002 | 0.0002 0.0005 | 0.7589 0.0004 [ 0 0 0.8550 0.0003 | 0 0

I

[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical
Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.




GT-COPR: Experiments

* Prediction of significant cancer-specific pharmacogenomic interactions:
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* GT-COPR generally has the best performance
 Similar observations can be found with tensor/strong PG
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Overview of Part |l

| P

multi-view

. Multi- Multi-
g as Hyperlink . .
Classification e . network Ranking Clustering network
prediction . .. .
association embedding
e Label NMF-based Label Consistency Multi-view MF-based
propagation- method propagation- based network embedding
based multi- Autoencoder based method homogeneous clustering Random
view/domain -based w/o attribute Consistency NoN walk-based
classification embedding w/ attribute based clustering embedding
*  GNN-based GNN-based Dependency heterogeneous GNN-based
embedding embedding inference embedding
*  Contrastive Network
learning for alignment




SyTE: Sylvester Tensor Equation for;@
Multi-Way Association =k
* Given:
* Aset of K networks {G, (k =1, ..., K)} (with node number n;).
* A multi-way anchor association tensor B.

e Output: Multi-way association tensor X
* Entries of X : the strength of multi-way association.
* Multi-way association: collective association of a node set.

Inputs: /z 2 oy Outputs:
/1 = - N - : .
4 2 @ 4 - K~ ai
i v | 4
Q0 16/ S | Baag) S W
N e : _4 ® | xe:
/1 () YA = e L ol e
< > : A 4 ” f | s
/8 P 74 ) A
~ - 4 B X
Multi-way Multi-way
Input networks anchor link tensor association tensor

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details: Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper Research Track-

124.html)



https://virtual.2021.kdd.org/paper_Research_Track-124.html

SyTE: Intuition 5@,

* Intuition: If multi-way association X (i, ..., 1) is close to X (jg, ..., J1):
* Two sets of nodes are strongly connected
* Nodes in each of the two sets share the same attribute respectively
* Nodes from node sets are connected by the same edge attribute

.o G171 G, Gy -/
[ i A iR 730
_l} Ao l}/b e S Y

* Large X (i3, 1i,,1i1) and Large X (js, j,,j1) indicate:

* Large A (iy,/1), A2 (i, j2) and A3 (i3, j3)
e {i1, 15,03}, {J1,J2,J3}: same node attribute

e {i1,j1} {iz, J2} {i3, J3}: same edge attribute

[1] Si Zhang and Hanghang Tong. 2016. Final: Fast attributed network alignment. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 1345-1354,

[2] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2008. Global alignment of multiple protein interaction networks with application to
functional orthology detection. Proceedings of the National Academy of Sciences 105, 35 (2008), 12763-12768

- 106 -




SyTE: Formulation 3‘@

* Objective function:

I I I I 2
J(X) = z B X (g, e t1) _ XUk -1J1) — Normalized association
s \/d(il, e lg) \/d(jl, - Jx)) smoothness preserver
JvedK .. Topology consistency
t(Aq, ... AK)I [f(lk)f(]k)l |g(lk ]k)|+ —————————————— Edge attribute consistency
--------------------------- Node attribute consistency
| ]/(X(lK, "t ll) _ B(lK' - ll)) ] ] __________________ Anchor association regu|arizer
e Details: an

¢ Ay s Ar) = A (i) - A (i i) e

* f(ix) = I(N1(iy, iy) = -+ = Ng(ik, i) A

* gk i) = W(E1(iy, j1) = -+ = Ex(ik, jk)) A 6 -

o d(iy, ..., ig) = Zjl,,,,,jK A, (i, j1) - Ag(ig, jk) }2/*/ 'L-is/vk

. /

B,v: weighting parameters

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details: Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper Research Track-

124.html)



https://virtual.2021.kdd.org/paper_Research_Track-124.html

SyTE: Sylvester Tensor Equation-

* On plain networks:
x—a.XXlKK Xz"'XKAl_(l_a)BZO

* where A; = (])i_l/z) A, (])l,_l/z). Normalization
* Corresponding linear system:
- I-A,®QAk)x=b x = vec(X),b = vec(B)

* On attributed networks:
X-a Z X % APD 5y oo BPPP — (1-)B =0
0.p.q 1 1
+ where A°”? = (D >N")(E? © A)(D, °N).
. Nlp: diagonal node attribute matrix for attribute p
 E7: edge attribute matrix for attribute o

e Corresponding linear system:
. (l _ Zo,p,q KgO;prCI) ® v ® Kg{olp:q)) X = b

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)

[2] More details: Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper Research Track-
124.html)



https://virtual.2021.kdd.org/paper_Research_Track-124.html

SyTE: Key Ideas on Plain Networks O@‘@L

 Decompose the equation into a series of subsystems
» Utilize the sparsity of B for decomposition
* Each subsystem is relatively easier to solve

e Subsystem by a Tensorized Krylov subspace method
* Tensorized Krylov subspace vs. traditional Krylov subspace: O(mX )=>0(sKlm)
* Solve each subsystem by generalized minimal residual method

1-4, ® - QA)x=|b A H:H

High dimensional system

Decompose ‘
Nz A DX
- i i
' High dimensional
‘ decomposed system
Tensorized Krylov subspace .v
(®§(=1ILL-+1,LL- _®§(=1 ﬁi)y =®{<=1 UIT;+11'0 A’ :H

Low dimensional system

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details: Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper Research Track-

124.html)



https://virtual.2021.kdd.org/paper_Research_Track-124.html

SyTE: Key Ideas on Attributed Networks O@‘@j

 Decompose the equation by node attributes
* The solution tensor has a block-diagonal structure

» Diagonal tensors by block coordinate descent (BCD)
* For diagonal block variables

* Adopt approximation in BCD for faster computation
e Faster computation

X—a«a Z X xlﬁg{o‘pm Xy oo X K(lo'p'Q) =(1-a)B A |£|= |E|

Ol ’
pa 5 \ High dimensional
ecompose '
o v RY AU _ qpii 7]
xl l_zx] ]XlAl ...XKAK—BL L |£|
j=1 ‘ A; = D;
Approximate High dimensional
i i ~ii ~ii i decomposed system
Xttt — Xt ><1 A1 XKA = u'bdated | ‘
. Kl
SyTE-P-Fast Low dimensional

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details: Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper Research Track-

124.html)



https://virtual.2021.kdd.org/paper_Research_Track-124.html

SyTE: Experiments

* Multi-network alignment:

* High-order metric: successful alignment if all nodes from input
networks are aligned correctly.

* Pairwise metric: successful alignment if any pair of nodes from input
networks are aligned correctly.

By high-order metric By pairwise metric
0.7 , - , ‘
—6—Basic 0.8
>50.6 —#—SYTE-Fast-P 0.7
o FINAL o
E 0.5 H=&—IsoRank © 0.6
a3 ~6—CLF =
Q
S04 S 05
"E -—
S 03 S 04
c c Y .
0.2 S -6 Basic
i é 0.2 == SYTE-Fast-P
01 ——CLF
0.1 FINAL
0 \ , \ ‘ —&—|soRank
0 0.1 0.2 0.3 04 0.5 0.1 0.2 0.3 0.4 0.5

Anchor link ratio Anchor link ratio

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)

[2] More details: Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper Research Track-
124.html)



https://virtual.2021.kdd.org/paper_Research_Track-124.html

SyTE: Experiments

* Scalability:

On p]ain networks On attributed networks
H \\\\\.\\\\\\: \\\\\\\\\\\\\ i >3000 )
>3000 FEeeeee0e6806698 >0 ) esetes SRe88s 000
1000 ¢ A= SYTE-Fast-A
— . SYTE-BCD
w n SYTE-Fast-A*||
. 100 > 100 —_—CG
£ = —6—FP
= I =
o 10 o 10
= £
c [
c 1 c
3 > 1 ]
o ~0—FP x
0.1 -=-CG
SYTE-Fast-P*
—— SYTE-Fast-P 0.1 ’
0.01 . .
0 2 4 6 0 2000 4000 6000 8000 10000
# of nodes <104 # of nodes

» SyTE-Fast-P/A exhibits a linear scalability w.r.t. the # of nodes of
the input networks

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details: Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper Research Track-

124.html)



https://virtual.2021.kdd.org/paper_Research_Track-124.html
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Cross-Layer Dependency Inference

* Obs. 1: Cross-layer dependencies in multi-layered
networks are often incomplete
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* Q1: How to infer the hidden cross-layer dependencies?

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.




Problem Definition

* Given: a multi-layered network
* Layer-layer dependency matrix G
* Within-layer connectivity matrices A = {Al, ---,Ag}

* Observed cross-layer dependency matrices D = {Dij}

* Find: true cross-layer dependency matrices {Eij}

W > .

Chemical Network

e e A, for chemical network, etc.

“ % ¢ G(1,2) =1,6(1,3) = 0;

* D, arerepresented by solid arrows
between G; and G,

PPl NETWORK

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.




Fast Cross-Layer Association Inference r@
(FASCINATE): Formulation L

* Key idea: as a collective collaborative filtering problem

e Within-layer networks as user-user network, item-item similarity
network, etc.

* Cross-layer dependency as user-item ratings
* Optimization problem:

MiNg.>0(i=1,..,9) ] = 2 ”l W, 0D;; — FiFJ") !llz*" T

i,j:G(i,j)=1 _ _
Matching observed cross-layer dependencies

« ) (R (T = AR+ 5 ) N Fy I
l

l

Node homophily Regularization

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.




FASCINATE: Optimization Algorithm 3‘@

* Block coordinate descent method
* For each F;, use multiplicative update method

i-)Ji £ P ™
c)Fz :2( | E . [—(W@:j =) Wi‘j 'i:/' D@J)Fj
j: G(i.5)=1

+(W;; oW, ; ® (Fiij))Fj]
+ alT;F; — aA;F; + _,:'i'_fFi)

X= ) (Wi;0W;;0Di;)F;+aAF;
J: G(i.9)

(4 0) \where
Y(“‘? '1?) Y = (WT_«; O] Wi:j ® (Fiij))Fj + o'T;F; + PF;

Fi(u, v) +— Fi(u, 11)\/

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.




FASCINATE: Experimental Setups

 Datasets:

Dataset | # of Layers | # of Nodes | # of Links | # of CrossLinks
SOCIAL 3 125,344 214,181 188,844
BIO 3 35,631 253,827 75,456
INFRA-5 5 349 379 565
INFRA-3 3 15,126 29,861 28,023,500
* Abstract dependency structure
R1 R2 :
Pa per Ch m cal ‘1— ) Airport
4 ' v /X ) wa -
I'\._ ..-". '\H__; .\._ ..-". I'\.__,.-f l: : '/. —"'}
Author Venue Gene Disease Internet Power AS
(a) SOCIAL (b) BIO (c) INFRA-5 (d) INFRA-3

I

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.




FASCINATE: Experimental Results

* Effectiveness of dependency inference on BIO dataset

Methods MAP | R-MPR | HLU | AUC | Prec@10
FASCINATE 0.0660 | 0.2651 | 8.4556 | 0.7529 0.0118
FASCINATE-CLUST | 0.0667 | 0.2462 | 8.2160 | 0.7351 0.0108
MulCol 0.0465 | 0.2450 | 6.0024 | 0.7336 | 0.0087
PairSid 0.0308 | 0.1729 | 3.8950 | 0.6520 | 0.0062
PairCol 0.0303 | 0.1586 | 3.7857 | 0.6406 | 0.0056
PairNMF 0.0053 | 0.0290 | 0.5541 | 0.4998 | 0.0007
PairRec 0.0056 | 0.0435 | 0.5775 | 0.5179 | 0.0007
FlatNMFE 0.0050 | 0.0125 | 0.4807 | 0.5007 | 0.0007
FlatRec 0.0063 | 0.1009 | 0.6276 | 0.5829 | 0.0009

* Fascinate outperforms all baselines

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.




FASCINATE - Experimental Results

e Effectiveness of d

ependency inference on INFRA-5

Methods MAP_ | R-MPR HLU AUC | Prec@10
FASCINATE 0.5040 | 0.3777 | 67.2231 | 0.8916 | 0.2500
FASCINATE-CLUST | 0.4297 | 0.3220 | 56.8215 | 0.8159 | 0.2340
MulCol 0.4523 | 0.3239 | 598115 | 0.8329 | 0.2413

PairSid 0.3948 | 0.2392 | 49.5484 | 0.7413 0.2225

PairCol 0.3682 | 0.2489 | 48.5966 | 0.7406 | 0.2309
PairNMF 0.1315 | 0.0464 | 15.7148 | 0.5385 0.0711
PairRec 0.0970 | 0.0099 | 9.4853 | 0.5184 | 0.0399
FlatNMF 0.3212 | 0.2697 | 44.4654 | 0.7622 | 0.1999
FlatRec 0.1020 | 0.0778 | 11.5598 | 0.5740 | 0.0488

* Fascinate outperforms all baselines

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd
E ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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classification embedding w/ attribute based clustering embedding
*  GNN-based GNN-based Dependency heterogeneous GNN-based
embedding embedding inference embedding
*  Contrastive Network
learning for alignment




EUDI;ﬂ}f
Network Alignment: Problem Definition

* Given:
* a set of networks {G;} (I = 2) where G; = {V}, E|, A} };
* V1, E;, A; are the nodes, edges and adjacency matrix of G;
* prior alignment matrices {H;_ , } between G; and Gi,.

* Find: the alignment matrices {Sll,lz} between G; and G,,,.

C @\a ><§
\__Gs 6. ) o~ -~

[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY,

USA.




Why Do We Care?

Identify Species-Specific Pathways

Protein-Protein Interaction (PPI) networks

PPl network 2

PPl network 1

G,
- .4 \ B

s

|

social network 2

s S

social network 1

Cross-Site Recommendation

4 ) o\

[ -
O > ,
o BT~ \.E;' ':
> .
i QS " iy “
= F QP ‘
Items Users ﬁaeb(y
\_ a ) wsers 'te"y

Fraud Detection

; -'f\‘ _
“ 9!
® ‘d
2

looks normal looks normal money laundering?

[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th

I

USA.

ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY,




Key Challenge #1: Complexity

P
* Time complexity:

 Most of existing works have an at least O(n?) time complexity
* |nefficient computations for large-scale networks

e Space complexity:
* At least 0(n?) to store the alignment matrix
 Costly memory consumptions

* Q: How to efficiently solve network alignment?

[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY,

USA.




Key Challenge #2: Variety g‘lﬂtﬂ}:f

 Networks have rich contextual information
* Node attributes, e.g., gender, age, etc.
e Edge attributes, e.g., relation types, etc.

N . N
iy

G, G,
Node Attribute: different shapes
Edge Attribute: straight vs. curved lines

* Q: How to encode contextual information to enhance
the alignment performance?

[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY,

USA.




Key Challenge #3: Disparity z‘lliﬂ},,

* Networks appear in various sources
* Networks may capture distinct information
e Facebook: to connect friend, family, etc.

* Same nodes have different behavior patterns
* E.g., a useris very active in Facebook but quiet in Twitter

* Q: How to handle the disparity behind multi-sourced
networks?

[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY,

USA.
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Overview of Network Alignment Methods '—

Pairwise NA

Collective NA

Higher-Order NA

EEICORERNS

= Consistency-based
= w/o attributes
= w/ attributes
= Embedding-based
= w/o attributes
= w/ attributes
= Optimal transport-
based
= w/o attributes

Consistency-based
= w/o attributes
= w/ attributes

Embedding-based
= w/o attributes

Consistency-based
= Single-level
=  Multilevel

Entity alignment
= Non-GNN based
= GNN-based
Cross-layer inference
Cross-network
transformation

[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY,

USA.




Coffee Break Time ]

QS We will resume the tutorial 15 minutes later.
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propagation- method propagation- based network embedding
based multi- Autoencoder based method homogeneous clustering Random
view/domain -based *  wj/o attribute *  Consistency NoN walk-based
classification embedding * w/ attribute based clustering embedding
*  GNN-based GNN-based *  Dependency heterogeneous GNN-based
embedding embedding inference embedding
*  Contrastive *  Network
learning for alignment




T
Ranking on Single Network: Intuition

e Assumption: Homophily (guilt-by-association)

* Example: Two researchers are close if they Node 4
* Share many common co-authors Nodel 10.13
Node 2 0.10
* Work on similar topics Node3 | 0.13
. Node 4 0.22
* Publish at same venue(s). Node5 | 0.13
0.04 03 Node 6 0.05
Node 7 0.05
N P 12 Node8 | 0.08
-08 0.02 Node9 | 0.04
(11 Node 10 | 0.03
0.04 Node 11 | 0.04
Node 12 0.02
(5)0.05

Ranking vector
0.05

[1] H. Tong, C. Faloutsos, J.-Y. Pan: Fast Random Walk with Restart and Its Applications. ICDM 2006

[2] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2014.




Ranking on Single Network: Formulati

* Nearby nodes, higher scores

Node 4
*1; = cAr; + (1 — ¢)e; Nodel | 0.13
. Node 2 0.10
* ¢; is one hot vector Node3 | 0.13
0.04 0.03 Noded | 0.22
0.10 (9 W Node5 | 0.13

0.02 Node 7 0.05

(®
0.13 (i) 0.04 Node 8 0.08

( Node 9 0.04

Node 10 0.03
’ (& 0.05 Node 11 0.04
0.1 \ Node 12 0.02

Query a

More red, more relevant

0.05
Ranking vector

[1] H. Tong, C. Faloutsos, J.-Y. Pan: Fast Random Walk with Restart and Its Applications. ICDM 2006
EZ] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international

onference on Knowledge discovery and data mining. 2014.




L e
CrossRank: Motivation ﬁ

* Al: Given a disease (e.g., P;), what are the most
relevant proteins (blue nodes)?

* A2: Who is most influential considering both the
within and cross-area influence?

__________

Robotics I,”J
Tissue-Specific PPl Networks Collaboration Networks

E [1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining. 2014.




CrossRank: Problem Definition g‘@

* Given:
* ANON S
* the query vectorse; (i=1, ..., g) : (2on)
* Example:e; =(0,1,0,0,1) |
* e, refers to Mat and Joe in A4

° Flnd ," Robotlcs \\
« ranking vectors r; for the nodes in A ;€ @1 .

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international
Eonference on Knowledge discovery and data mining. 2014.




CrossRank: Intuition

* Within-network smoothness
e Similar rankings for close nodes
* Example: PageRank

* Query preference
* High scores for the queried nodes

* Cross-network consistency
e Similar ranking scores for an overlapped domain node if the
domains this node belongs to are similar with each other.

 Example: If
e a protein is highly relevant to disease-i.
e disease-i is very similar to disease-.
* thenitis likely that the same protein is also highly relevant to
disease-j.

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international
Eonference on Knowledge discovery and data mining. 2014.




CrossRank: Formulation

g
l(Il]) rj(IiJ)

J(ry, ory)=c ) r{(l,, — A+ (1 —¢) ) |Ir; —e;ll? -I-|a u
1 ’ ; 2 1121 V m(l V m(/

within-network query cross-network
smoothness preference consistency

* I; is the ranking vector of the domain-specific network A;.
d,, (1) is the degree of main node i in the main network G.
* [;; is the set of common nodes between A; and A;.

* G(i,j) is the similarity between A; and A;.

Similar ranking scores for
an overlapped domain
node if the two domains it
belongs to are similar.

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international
Eonference on Knowledge discovery and data mining. 2014.




CrossRank: Optimization g‘@

* Matrix of objective function:
J(@) =cr'(I, — A)r+ (1 = ¢)|Ir — e||? + 2ar'Xr
I'1 €1
r=|: e=|:
Ig €g
X encodes the cross-network consistency
RWR-like update rule

C 2a 1 —¢ — Xis also the
I = K + ? _ e Laplacian matrix
<1+2a 1+2a:a 1+ 2a of Y.

Ay - O]
A=|: ~

0 - A

8.

within-network walk cross-network walk

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international
Eonference on Knowledge discovery and data mining. 2014.




CrossQuery: Problem Definition @

* Given:
* a NoN
* a query node from a source domain-specific network A,
* a target domain-specific network A4
* an integer k

* Find:
* the top-k most relevant nodes from A4

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international
E conference on Knowledge discovery and data mining. 2014.




CrossQuery: Method Tl

* CrossQuery-Basic:
* Restricting the candidate nodes in the target domain-
specific network.
* CrossQuery-Fast:

* Prune less relevant main nodes in the main network.
relevant subnetwork

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international
Eonference on Knowledge discovery and data mining. 2014.




CrossQuery: Experimental Results

e Collaboration Prediction on DBLP NoN

| #Papers | Hops | #Pairs | Methods [ AUC | Accuracy |
PC 0.7196 0.4444
Katz 0.7439 0.5556
>3 [3.4] 45 PropFlow 0.7558 0.6222
PathSim 0.5636 0.2444
PageRank 07417 05333
CrossQuery | 0.7685 0.6444
PC 0.6009 0.3000
Katz 0.6243 0.3714
>3 [3.6] 70 PropFlow 0.6268 0.4429
PathSim 0.5278 0.2143
PageRank 06378 03714
CrossQuery | 0.6632 0.4571
PC 0.6521 0.2609
Katz 0.6717 0.3478
>3 [3.4] 23 PropFlow 0.6850 0.3478
PathSim 0.4279 0.1304
PaceRank 06743 0.3478
CrossQuery | 0.7099 0.3478
PG 0.5692 0.2105
Katz 0.5786 0.2368
>5 [3.6] 38 PropFlow 0.5950 0.2895
PathSim 0.4362 0.1053
PaceRank 0 5880 02368
CrossQuery | 0.6308 0.2895

| Area [ Conference included

DM

KDD, ICDM, SDM, PKDD, PAKDD

ML

ICML, NIPS, AAAI 1JCAI, UAI, ECML

DB

VLDB, SIGMOD, ICDE, ICDT, EDBT, PODS

IR

SIGIR, WWW, ACL, ECIR, CIKM

BIO

ISMB, RECOMB, ECCB, BIBE, BIBM, WABI

Time (sec.)

2

2

1

1

5 —CrossRank—— .
0o 3\ o o

5

G
G
&

CrossQuery-Fast |

L CrossQuery-Basic

k=200 k=500

CrossRank -@-
CrossQuery-Basic &

CrossQuery-Fast -

* Observation: CrossQuery is effective and fast for DBLP NoN.

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international
Eonference on Knowledge discovery and data mining. 2014.
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Network of Heterogeneous T
Information Networks (NeoHIN): Intuition

* Strong representation power of HIN
* Domain-specific and cross-domain ranking in NoN
* Enjoy the best of both kinds of models

-
, i
e " L
Database \“'\’ ta Min #Machine Learning*
@6\  / Co—n) g
\
i
T el @] @
I
e
/ /
’//\ lfl
~—— N e
~ u

NoN: area network of co-author networks Scholar HIN

[1] Slides credit to Zhe Xu.
[2] Z. Xu, S. Zhang, Y. Xia, L. Xiong and H. Tong, "Ranking on Network of Heterogeneous Information Networks," 2020 |IEEE International

Conference on Big Data (Big Data), 2020, pp. 848-857, doi: 10.1109/BigData50022.2020.9378121. -141 -




NeoHIN: Problem Definition g‘@

* Given:
* A network of heterogeneous network (NeoHIN).
* A set of target nodes for ranking.
* A set of query nodes of interests (optional).
* A set of meta-path of interests (optional).

e e e e e e e e e e == == ==

A = : e
query node example 1 ii"ﬁ% ii -
=t T N -
s Medical Imaging
BEiEgEI')otS///l/I \\ ////4==°=======____=ﬁ\

s s s e s Niim [ AN I|
' 1 gﬁg b. "i target nodes
e > e N\ /'P - / s r,,%‘.j. |
I - o 2

[1] Z. Xu, S. Zhang, Y. Xia, L. Xiong and H. Tong, "Ranking on Network of Heterogeneous Information Networks," 2020 |IEEE International
Conference on Big Data (Big Data), 2020, pp. 848-857, doi: 10.1109/BigData50022.2020.9378121.

X

-142 -




HITS-NeoHIN: Formulation

* Integrate the cross-domain consistency into HITS.

. C I/
min J; (u;, v;) = S 1A —w; 17+ (1= c)(|u; — ey ||+ ||Vi - em‘||120):
/ s.t. Vx,u;(x) =2 0,v;(x) = 0 \
Objective of Hits from the i-th domain Query preference

For two similar domains i, j,

* HITS-NeoHIN: similar ranking scores for an
overlapped node if the two

min J(u,v) = z]‘(u“ V;) +)domains it belongs to are similar

Sk u;(I;;)  wi(s;) 5 (1) ](l])
oA o m”zG( ) +a ZZIIM mnz i),

i=1i=

Cross-domain con5|stency

[1] Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5), 604-632.




PreP-NeoHIN: Formulation g‘@

* Integrate PreP algorithm into NeoHIN
* PreP: min Lo ;(m;, pi, P, 0;)
— —log(p(pci; ni; Pi; ¢i) Hl' |ai' ﬁl))

N\

Objective of PreP from  Contribution of meta-paths (For two similar domains i, j, the
the i-th domain importance of a meta path £ in
these two domains (7;;, 17
* PreP-NeoHIN: \ should be similar: y
g g 1T n
min L :z l(nl,pl,¢l,9)+y;‘7§‘( i )ZG(l 5,
i=1 i=1 )= 1t1Vd(ll d(]
Objective of PreP from every domain Cross-domain consistency

[1] Shi, Y., Chan, P. W., Zhuang, H., Gui, H., & Han, J.. Prep: Path-based relevance from a probabilistic perspective in
E heterogeneous information networks. KDD 2017.




NeoHIN: Experimental Results

* Two synthetic networks with 2,000 nodes
e Cross-domain link prediction on synthetic dataset

Accuracy
K=5 | K=10 | K=15 | K=20 | K=25 | K=30
CrossRank 0.045 | 0.090 | 0.135 | 0.180 | 0.202 | 0.225
HITS-NoN 0.034 | 0.056 | 0.112 | 0.124 | 0.135 | 0.180
‘ HITS-NEOHIN | 0.045 | 0.090 | 0.146 | 0.191 | 0.213 | 0.236

Algorithm

* Metapath-based link prediction

Algorithm ROC-AUC | AUPRC
PReP 0.553 0.307
m) | PReP-NEOHIN 0.566 0.404

Observation: NeoHIN has achieved the best performance.

[1] Z. Xu, S. Zhang, Y. Xia, L. Xiong and H. Tong, "Ranking on Network of Heterogeneous Information Networks," 2020 IEEE International
E Conference on Big Data (Big Data), 2020, pp. 848-857, doi: 10.1109/BigData50022.2020.9378121.




NeoHIN: Experimental Results

* Five domain networks from AMiner
* Cross-domain link prediction

. Accuracy
Algorithm K=100 | K=200 | K=300 | K=400 | K=500
PageRank 0.016 | 0.092 | 0.131 | 0.150 | 0.198
CrossRank 0.063 | 0.120 | 0.162 | 0.223 | 0.258
HITS 0.042 | 0087 | 0.128 | 0.154 | 0.172
HAITS-NoN 0.064 | 0.130 | 0.172 | 0233 | 0273
HITS-HIN 0.016 | 0.082 | 0.126 | 0.143 | 0.167

mm) | HITS-NeoHIN | 0.109 | 0.160 | 0.203 | 0.246 | 0291 |

* Metapath-based link prediction

Algorithm ROC-AUC | AUPRC
PathCount 0.414 0.464
PathSim 0.491 0.513
JoinSim 0.574 0.579
PReP 0.542 0.524
PReP-NEOHIN 0.584 0.607

[1] Z. Xu, S. Zhang, Y. Xia, L. Xiong and H. Tong, "Ranking on Network of Heterogeneous Information Networks," 2020 |IEEE International
Conference on Big Data (Big Data), 2020, pp. 848-857, doi: 10.1109/BigData50022.2020.9378121.

[2]J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: extraction and mining of academic social networks,” in Proceedings of _ 146 -
the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2008, pp. 990-998.
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Single Network Clustering: Motivation

* Detect sub-networks that satisfy certain properties
* Many connections within clusters
* Few connections across clusters

Gribier

Mile. Baptistine \ /| ~___—— Count
Myriel

==

W12 | - "v’ _)“\
Rpté  Rpn3 — \\ Countess de Lo

Champtercier

Cravatte
Gebo Napoleon ! Man

Protein complexes in a PPl network A novel character interaction network

[1] Credit to 592-ST-NSB-Clustering.pdf
E[2] Jingchao Ni, Hanghang Tong, Wei Fan, and Xiang Zhang. 2015. Flexible and Robust Multi-Network Clustering. Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
[3] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks. Physical review
E 69.2 (2004): 026113.




. . 0
Multi-Network Clustering: Motivation@

* Networks are often collected from multiple sources.
* Single network is noisy and provides partial knowledge.
* Multi-network can provide complementary information.

An example of multi-network

E [1] Kiveld, Mikko, et al. "Multilayer networks." Journal of complex networks 2.3 (2014): 203-271.




Co-regularized Multi-view @
Spectral Clustering (CMSC): Single View

¢ let X = {ng), ng), ., x,(lv)} denote the examples in
view v and K" denote the similarity matrix.

* The single view spectral clustering is:

max ir (U(’“)Tﬁ('”)U('“)) st UMTU® =
U(v) Rnxk

« where L) is the normalized graph Laplacian.

== Laplacian amd Eigensolver I Al Clustering amll Partition

[1] Figure credit to https://developer.nvidia.com/discover/cluster-analysis
[2]Abhishek Kumar, Piyush Rai, and Hal Daumé. 2011. Co-regularized multi-view spectral clustering. In Proceedings of the 24th

International Conference on Neural Information Processing Systems (NIPS'11). Curran Associates Inc., Red Hook, NY, USA, 1413-1421. - 150 -




. . o |
CMSC-Pairwise: Intuitions @

* Different views provide compatible information.
* Regularize the disagreement between views v and w.

e Two-view case:

P
Kooille 1Kyl

2

D(U®, UM) = H |

F

e Reformulation:

DU, U™) = —tr (U U GEIYT)




CMSC-Pairwise: Formulation jcl

* Multi-view case:
* The objective function:

F——————_—_——_ e === - 1
™m I
I T I v oo ooy
 max >t (UW E(”)U(“))|+ A Y e (U('L’)U(“)l U@ y®’ ) ,
U(l)’U(Z) ..... U(‘,”)ER”XA:I_T:-l — . | 1< ‘¢',<"nl_ _________ -
/ st. U®'U® =1 v1 fifng
Within-layer spectral clustering Cross-layer pairwise regularization

* Transformed Laplacian form:

max tr {U("’)T (E("") + A Z U(“’)U('“’)'l) U("')}, st. UM Ul =7
U®)

1<w<m,

NE-XT




CMSC-Centroid: Formulation jcl

e Key idea: Set an underlying centroid matrix U”

. |
(’U)T (v) (’U)) ( (v) (’U)T " *T)I
U<1>,U<z>,..%a<fi>,u*GRW;” (U LU +:§,U:)\vtr vyt uru)!

st. UM UM =T vi<ov<V, U*Tiﬁ — ]

o SoIving forthe U* requires: Centroid matrix regularization

max > Atr (U(“)U(“)TU*U*T> st UTUr=1
U*GRnX




CMSC: Experimental Results

* Two synthetic datasets and three real datasets

* Clustering on five datasets wit

N NMI metric

=)

| Method | Synthdatal | Synthdata2 | Reuters | Handwritten | Caltech |
Best Single View 0.267 0.0 0.898 (0.0) 0.287 0.019) | 0.641 0.008) | 0.510 (0.008)
Feature Concat 0.294 0.0) 0.923 0.0) 0.298 0.020) | 0.619 (0.015) -
Kernel Addition 0.339 (0.0 0.973 (0.0) 0.323 0.021) | 0.744 0.030) | 0.383 (0.008)
Kernel Product 0.277 0.0 0.959 (0.0 0.123 0.010) | 0.754 0.026) | 0.429 (0.007)
CCA 0.330 0.0 0.932 (0.0) 0.147 0.003) | 0.682 0.019) | 0.466 (0.007)
Min-Disagreement 021300 0036009 e e e e
Co-regularized (P) (2) 0.378 0.0 0.981 (0.0 0.375 ©0.002) | 0.759 0.031) | 0.527 (0.007)
Co-regularized (P) (3) - 0.989 0.0) - - 0.533 (0.008)
Co-regularized (P) (4) - - - - 0.564 (0.007)
Co-regularized (C) (2) 0.367 0.0 0.955 0.0) 0.360 0.025) | 0.768 0.025) | 0.522 (0.004)
Co-regularized (C) (3) - 0.989 0.0) - - 0.512 (0.007)
Co-regularized (C) (4) - - - - 0.561 (0.005)

e (1), (2), (3) indicate the number of views used.

e Letters (P) and (C) indicate pairwise and centroid
based methods.
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GNN-based GNN-based Dependency heterogeneous GNN-based
embedding embedding inference embedding
Contrastive Network
learning for alignment




NoN Clustering (NoNClus): Intuitions

* Different networks have different meanings for clusters.
 Domain similarity is important for the clustering task.

Example:

Dependent on the
meaning of domain
network E, the
cluster in E can
represent Gene or
research community.

[1]Slides credit to https://nijingchao.github.io/slide/kdd15_nonclus_slides.pdf
[2)Jingchao Ni, Hanghang Tong, Wei Fan, and Xiang Zhang. 2015. Flexible and Robust Multi-Network Clustering. Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, - 156 -
USA, 835-844. DOI:https://doi.org/10.1145/2783258.2783262




NoNClus: Formulation

* Phase 1: main network clustering.
 Symmetric Non-negative Matrix Factorization (SNMF).
* Minimizing

2
Jy=|G-HH'|  si. H>0

Cluster
Domain similarity e -—§@ ‘ the main
r N SIGCSE/ e venue
s network.

L———J

\\\\_//,
An example of NoN of research papers, domain network represents venue.




. iy
NoNClus: Formulation (cont.) g‘@

* Phase 2: domain specific network clustering (Simplified).

* Domain-specific networks in the same cluster have same
underlying clustering structure.

* All domains have n nodes and t clusters.

e Let the domain cluster assignment vector for node x in A®
be u (| .., 8).

. Deflne k hldden domain cluster assignment vectors

(J)
. (=1, ..., k)
S X 2 4 ) ) (7 ) )
J,= 2 D0 v o =D A -UC Wy H +aZZh,, U®_vu H
F :
\ J \
v | |
Recall h;; represents main cluster membership Domain-specific network clustering  Main cluster guided regularization

I
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NoNClus: Formulation (cont.) g‘@

* Phase 2: domain specific network clustering (General)
* Different domains can have different sets of nodes.
* Different domains can have different number of clusters.
* Indirect regularization

* Minimize
A

// [. N

lJ) (,1) A (lJ)‘ (lJ) )2 Q9
av*‘ x*' b Sl Pl e
/ I/ 2]\ '/ \
\ Ly ST ——— LB
. \\ /L\ \\ 2 //
Nodes in same domaln networks Regularized vector DL_IPEe N i

Example: since D, E, F are in the same cluster, if
nodes 1 and 2 have similar cluster assignments
in D, their cluster assignments in E and F
should also be similar.




NoNClus: Experimental Results

 Clustering accuracy on two synthetic datasets

* In view dataset, all A®Y have the same size.

* In dom dataset, different A®) have different sizes.

Dataist Mathod Main cluster 1 Main cluster 2 Main Cluster 3
Net 1 Net 2 Net 3 Net 4 Net 5 Net 6 Net 7 Net 8 Net 9 | Net 10 || Overall
SNMF 0.8751 | 0.8716 | 0.8735 || 0.8796 | 0.8732 | 0.8754 || 0.8722 | 0.8690 | 0.8682 | 0.8746 0.8732
Spectral 0.8587 | 0.8586 | 0.8675 || 0.8619 | 0.8571 | 0.8624 | 0.8626 | 0.8582 | 0.8583 | 0.8622 0.8607
CTSC 0.6249 | 0.6258 | 0.6279 || 0.6221 | 0.6236 | 0.6196 | 0.9157 | 0.9118 | 0.9106 | 0.9181 0.7400
. PairCRSC || 0.9166 | 0.9174 | 0.9227 || 0.9186 | 0.9176 | 0.9173 || 0.9355 | 0.9335 | 0.9378 | 0.9353 0.9252
CentCRSC |[ 0.9050 | 0.9031 | 0.9090 || 0.9021 | 0.9090 | 0.9077 || 0.9391 | 0.9408 | 0.9342 | 0.9378 0.9188
TF - - - - - - - - - - 0.6505
‘ CGC 0.6364_| 0.6337 | 0.6407 Il 0.6385 | 0.6273 [ 0.6316 |l 0.7332 | 0.7365 | 0.7251 | 0.7210 0.6724
NoNCLus || 0.9444 | 0.9403 | 0.9463 | 0.9447 | 0.9435 | 0.9418 || 0.9617 | 0.9621 | 0.9643 | 0.9629 | 0.9512
SNMF 0.6584 | 0.6687 | 0.6583 || 0.7123 | 0.7063 | 0.7129 || 0.6558 | 0.6596 | 0.6620 | 0.6630 0.6787
— Spectral 0.5554 | 0.5618 | 0.5556 || 0.5799 | 0.5768 [ 0.5811 || 0.5167 | 0.5188 | 0.5241 | 0.5242 0.5490
lelele 0.7303 1 07297 | 07229 Il 0.7992 | 0.7962 | 0.7965 Il_0.7859 | 0.7840 | 0.7837 | 0.7876 0.7797
- NoNCrus || 0.7882 | 0.7960 | 0.7914 || 0.8649 [ 0.8650 | 0.8654 || 0.8409 | 0.8363 | 0.8367 | 0.8389 || 0.8388

 Observation: dom dataset is difficult than view dataset.




Overview of Part |l

P |

multi-view

. Multi- Multi-
g as Hyperlink . .
Classification e . network Ranking Clustering network
prediction . .. .
association embedding
e Label NMF-based Label Consistency Multi-view MF-based
propagation- method propagation- based network embedding
based multi- Autoencoder based method homogeneous clustering Random
view/domain -based w/o attribute Consistency NoN walk-based
classification embedding w/ attribute based clustering embedding
*  GNN-based GNN-based Dependency heterogeneous GNN-based
embedding embedding inference embedding
*  Contrastive Network
learning for alignment




Embedding on Single Network:
Motivation

* Represent each node with a vector
Node clustering

* Applications:
* Node classification

* Link prediction « M =L o =
. . . g @ Q gl o L4 ] ’ X I
* Node visualization ¢ o ¢ s , 1°0o N
.\ @ : ® I_@ W ® ¢ e L.
® .. @ . -— .. -1.0 = " -
L @ » ® 12l 09 @
. "
® g ® :’ » -14
F s o —Link prediction «.y «."
L _® p _18H %5 OTO 0.5 1.0 1‘5 2.0 25
(a) Input: Karate Graph (b) Output: Network Embedding

Visualization of network embedding.

[1] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning of social representations. In Proceedings of the 20th ACM
EIGKDD international conference on Knowledge discovery and data mining.

2] Tang, Jian, et al. "Line: Large-scale information network embedding." Proceedings of the 24th international conference on world wide web.

015.
[3] Tang, Jian, et al. "Visualizing large-scale and high-dimensional data." Proceedings of the 25th international conference on world wide web.




Multi-layered Network Embedding: %QLIDE_H»
Motivations

* Current works focus on single network embedding.

* Networks are complicated with cross-domain interactions.

* Examples: critical infrastructure systems and organization-level
collaboration platform.

Teary‘ Network

Member] &w

Sdcnal Network
U
= B = )

Information Network

Expertise

Power Grid

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).
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Multi-layered Network Embedding %p@gﬂ»
(MANE) : Problem Definition

* Given:
* The embedding dimension d;, d5, ..., d, for different layers;
* A set of g within-layer adjacency matrices A={Ay, ..., Ay}

* Observed cross-layer dependency matrix D ={D; ;, (i,j =
1,..,9)( # j)} where D; ; € {0,1}"*™ denotes the cross-
layer network dependency between A; and A;;

* Output: the embedding representation F; € R™i*¢

Input:

Team Network: A, Tean Netiork | Output:

Member Dependency: D, 4 Member] ﬂw Team Network: F;

Social Network: A, So’cnalNetwork Social Network: F,
ExperUse. Dependency: D35 eepertise - Information Network: F5
Information Network: A5 Information Network

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).

I




Multi-layered Network Embedding O@‘@L
(MANE): Intuition

* Symmetric non-negative matrix factorization (SNMF).
* Collaborative filtering for bipartite graph. |B B/B|B B

Book | Book | Book | Book | Book
1 2 3 4 5

User A l’
User B l’ l’
User C l’
User D I’

SNMF for single network Collaborative filtering
* Key idea:
* MF for cross-layer edge
* Smoothness regularization for within-layer edge

> | >0 | >Ho | >0

[1] Figure credit to .
[2] Kuang, Da, Chris Ding, and Haesun Park. "Symmetric nonnegative matrix factorization for graph clustering." Proceedings of the 2012

SIAM international conference on data mining. Society for Industrial and Applied Mathematics, 2012. 165



https://www.advancinganalytics.co.uk/blog/2020/5/13/recommendation-systems

MANE: Within-layer Connection )

* Smoothness requirement:

| .. Fk(’&,) Fk(]?) 2
INTA _
min 2 E ' k(2, 7)]] " m 13,

I'I'iaryﬁ Network |

Laplacian matrix for the k-
 Reformulation: th layer network M““"“]. &w
i -/'I I_So’cnal N‘etwq‘rk |

L tr(FiLyF) s.t. FiF, =1, ™
k — —

'n_formation Network |

* Objective function for all layers:

P, max ZWFLF)st F/F, =1(vi=1,,,.9)

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).
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MANE: Cross-Layer Dependency

* Interaction requirement:
min ||D;; — FE{QF;H% o Teaq"anmnrl:

Fi,Fj,Kz'j I
ot F'F =L F'F, =1 1"
. . . &8 TR T _SdaaINetwork
K;; is the interaction matrix. -— =g :
. . . I Expertise
* Objective function: Tl [ 8
Information Network
g
/ /
Jnax 1 tr(F'L;F,;) — o Zl ID;; — FiKi,;F)|1%
b= 2,

s.t. FIF;, =1 (Vi=1,...,9),

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).
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MANE: Experimental Result

* Node classification on AMiner datasets (3 layers)
* Metrics: Macro-F1 and Micro-F1

[ Training Ratio [ 10% [ 20% | 30% | 40% [ 50% | 60% | 70% [ 80% | 90% |
CCF 85.34 | 88.37 | 89.70 | 90.91 | 91.07 | 91.24 | 91.31 | 91.44 | 91.62

CMF 84.33 | 87.65 | 88.84 | 89.39 | 90.38 | 90.43 | 90.47 | 90.50 | 91.20

MacroF1 NMF 7440 | 7552 | 75.97 | 76.49 | 80.91 | 84.88 | 8520 | 86.00 | 86.79
e Deepwalk 82.67 | 85.05 | 86.02 | 86.81 | 87.32 | 87.37 | 87.47 | 88.01 | 88.14
Deepwalk-within || 63.92 | 67.33 | 68.48 | 68.87 | 69.89 | 70.50 | 71.70 | 71.87 | 72.27

LINE 83.50 | 84.85 | 86.90 | 87.53 | 88.09 | 88.15 | 88.34 | 88.37 | 88.50

LINE-within 4472 | 51.80 | 56.58 | 61.58 | 63.27 | 66.55 | 67.69 | 68.21 | 70.85
Metapath2vec 85.46_| 86.53 | 87.23 | 87.71 | 88.06_| 89.45 | 89.42 | 89.99 | 00.80

‘ M MANE 88.80 | 90.46 | 91.15 | 91.78 | 92.31 | 92.37 | 92.38 | 92.43 | 92.72]
CCF 92.44 | 92.89 | 92.87 | 93.35 | 93.76 | 93.94 | 94.40 | 94.38 | 94.48

CMF 92.07 | 92.88 | 92.62 | 93.10 | 93.25 | 9357 | 94.18 | 94.30 | 92.64

Micro.F1 NMF 88.06 | 88.28 | 88.48 | 88.73 | 89.42 | 89.55 | 89.80 | 90.07 | 90.36
: Deepwalk 89.99 | 90.54 | 90.82 | 91.08 | 91.33 | 91.59 | 91.72 | 91.84 | 92.03
Deepwalk-within 83.23 | 84.21 84.70 | 84.75 | 85.08 | 85.11 85.52 85.69 | 86.32

LINE 89.16 | 90.83 | 91.40 | 91.74 | 91.90 | 91.93 | 91.96 | 92.05 | 92.20

LINE-within 66.51 | 72.27 | 73.97 | 75.74 | 76.61 | 77.34 | 78.13 | 78.45 | 79.36
Metapath2vec 92.16 | 93.51 | 93.77 | 93.89 | 93.74 | 93.93 | 93.94 | 94.37 | 94.96

~| MANE 93.15 | 94.44 | 94.73 | 94.75 | 95.19 | 95.28 | 95.31 | 95.45 | 95.59]|

* Observation: MANE is better than single network
embedding methods.

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).
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MANE: Parameter Study

* Performance w.r.t. the cross-domain parameter
* Performance w.r.t. to embedding dimensionality

0.95 e,—*-~e__—o—-_e___o__—e-——-0-__0 0.95 X PR T |
7’ ,.~~ e -0‘4’0’ /.-_—.-——’-—_.
P ’ ‘__‘0-~.._——0-—".—__.'—_" /O-_‘o" T g -0’,
o 0.9¢ s o 09- 7 s
o « g & i 25 -
& " © | L o
Eoss - Eo.85 /
g ’ g /
[} v 3 /
& o8 o o8- /
/
/
0.75 0.75¢ i
-© Micro-F1 -© Micro-F1
- Macro-F1 - Macro-F1
0.7 0.7
0.001 0.01 0.1 0.5 1 5 10 50 100 1000 20 30 40 50 60 70 80 90 100 110 120
value of « Embedding Dimensionality

* Observations:
* Integrate the cross-layer part boosts the performance.
* Large dimension captures more information.

E [1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).




Overview of Part |l

l

multi-view

. Multi- Multi-
g as Hyperlink . .
Classification e . network Ranking Clustering network
prediction . .. .
association embedding
e Label NMF-based *  Label Consistency Multi-view MF-based
propagation- method propagation- based network embedding
based multi- Autoencoder based method homogeneous clustering Random
view/domain -based *  wj/o attribute Consistency NoN walk-based
classification embedding * w/ attribute based clustering embedding
*  GNN-based GNN-based *  Dependency heterogeneous GNN-based
embedding embedding inference embedding
*  Contrastive *  Network
learning for alignment




Multiplex Network Embedding (MNE){]
Intuitions

* DeepWalk shows advantages in single network embedding
* Leverage common nodes across layers for regularization

= E—- . . . . - .y Wl_l - 4

(1) Nodes in single network have . @ ’

[ . .
. . . e ® o4 . ° o Rando alks Uk l]"r ul:u j
unigue connectivity; : XN\ /AALN : :&, .
(2) Nodes in multiplex network , <\t 1 P
demonstrates different

connectivities across layers.

r ________ I “se ’ ® :x
I \J_V_\-/ gl I * » Q.
: i ) N~ 2 1 B _
I d(vy) 18 _ Y :' : ) ) ) )
I M ) ) 10 -05 00 05 10 L5 20 2.5
4 ______ 3 _ (4) Hierarchical Softmax (5) Output: Representation

[1] Zhang, Hongming, et al. "Scalable Multiplex Network Embedding." [JCAI. Vol. 18. 2018.
E [2] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning of social representations. In Proceedings of the 20th

-171 -

ACM SIGKDD international conference on Knowledge discovery and data mining.




MNE: Problem Definition @

* Given:
* {G; = (N;, E;)},where N; is the node set and E; is the edge set.

* Find:
* b, € R%, the common-shared embedding for node n

. ug € R?, the specific embedding for n in the i-th netwcl))rk
’ 1

« A transformation matrix X! € RS*4 P,
* Final embedding

1 1 1 (4
v, =b,+w -X" u,

P; appears in two layers while
P, appears in three layers.

[1] Zhang, Hongming, et al. "Scalable Multiplex Network Embedding." [JCAI. Vol. 18. 2018.

[2] Figure credit to Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of thf72
29th ACM International Conference on Information & Knowledge Management. B B




MNE: Algorithm g‘@

e Skipgram:

— log sz‘, (nj—ca vy M1 M1y s Myt ‘ nj)
* Probability: exp(v), T vi )
sz‘ (nk | ’I’Lj) — T j_
where v,, represents the parameters of context vectors
shared by all relation types.

* Word2vec: use negative sampling

T T i
E = —log J(v;k 'an) —' _Z 1log o(—v, " - an)
Ille_ n;|

Negative sampling set

[1] Zhang, Hongming, et al. "Scalable Multiplex Network Embedding." IJCAI. Vol. 18. 2018.
[2] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).




MNE: Experimental Results

* Link prediction for six datasets with AUC metric

Model | Vickers | CKM | LAZEGA | CELEGANS | Twitter | Private
DeepWalk 0.821 (0.030) | 0.781 (0.008) | 0.780 (0.007) | 0.821 (0.006) | 0.502 (0.002) | 0.621 (0.007)

LINE 0.676 (0.011) | 0.637 (0.012) | 0.695 (0.006) | 0.732 (0.006) | 0.519(0.003) | 0.512 (0.010)
Node2Vec 0.821 (0.030) | 0.781 (0.008) | 0.780 (0.007) | 0.820 (0.006) | 0.504 (0.003) | 0.644 (0.010)
PMNE (n) 0.810 (0.032) | 0.917 (0.008) | 0.792 (0.009) | 0.843 (0.003) | 0.446 (0.004) | 0.629 (0.006)
PMNE (r) 0.844 (0.025) | 0.904 (0.008) | 0.813 (0.007) | 0.835(0.007) | 0.446 (0.001) | 0.659 (0.005)
PMNE (c) 0.837 (0.029) | 0.847 (0.016) | 0.797 (0.011) | 0.824 (0.009) | 0.449 (0.002) | 0.506 (0.004)

Common Neighbor (CN)
Jaccard Coeficient (JC)
Adamic/Adar (AA)

0.799 (0.011)
0.778 (0.007)
0.803 (0.019)

0.877 (0.006)
0.873 (0.006)
0.875 (0.013)

0.809 (0.007)
0.826 (0.007)
0.814 (0.008)

0.869 (0.002)
0.833 (0.001)
0.881 (0.001)

0.592 (0.002)
0.520 (0.002)
0.592 (0.002)

0.691 (0.002)
0.573 (0.004)
0.691 (0.003)

MNE

—

0.871 (0.014)

0.900 (0.010)

| 0.839 (0.013)

| 0.910 (0.006)

0.622 (0.003)

| 0.723 (0.002)

* Observation: MNE has a 2%-3% advantage over other
baselines.




MNE: Experimental Results (cont.

* Node classification and scalability

1.05
1004 0.9917 0.9958 . : :JI:IdEeZVec, Deepwalk, and PMNE(r)
0.9459 05626 0.9583 10 PMNE(n) and PMNE(c)
0.95 1 o) -
0.9169 s
> = 102_-_
@ 0.90 o ,
5 3
5 0.85 0.8p55 2 104 S
< E \ g
0.80 e
2 1007 PF e
0.751
101
0.70_ ,'.‘ I
Node2Vec LINE Deepwalk PMNE(n) PMNE(r) PMNE(c) MNE ot 102 10° 10°
Number of nodes
Node classification performance. Scalability.

e Observation: MNE performs well and has a linear
memory usage.
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. Multi- Multi-
g as Hyperlink . .
Classification e . network Ranking Clustering network
prediction . .. .
association embedding
e Label *  NMF-based *  Label *  Consistency *  Multi-view *  MF-based
propagation- method propagation- based network embedding
based multi- *  Autoencoder based method homogeneous clustering * Random
view/domain -based *  wj/o attribute *  Consistency * NoN walk-based
classification embedding * w/ attribute based clustering embedding
*  GNN-based *  GNN-based * Dependency heterogeneous *  GNN-based
embedding embedding inference embedding
*  Contrastive *  Network
learning for alignment
multi-view




Deep Multiplex Graph Infomax O@‘@L
(DMGI): Problem Definition

* Given:
 {G,=(N,E. . X)},r=1,...M
 N:node set, X: the attribute matrix.
* E,: edge set for the relation r

* Find: node embedding for each node z; € Z € R™*¢,

social network 1 social network 2

Note that in DMGI,
attribute matrix is
shared in all layers.
Colors represent
attributes.

<
o O o o
O O O = O
R =R | Rk O O

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial
E Intelligence. Vol. 34. No. 04. 2020.




DMGI: Intuition

e Graph Convolutional Network (GCN) for attributed network

H) = g,.(X, AD W) = o (b75A<")1j;%XW<,-_)
e Deep Graph Infomax (DGI) for modeling:global properties_.'of graph

L= Z log D (h;,s) + Zlog (1 —D (ﬁj,s)>
Vv, EV 7=1
h;: node embedding, s: graph embedding and ilj: negative node embedding.

Geonv Geonv et R , ‘
o e 2 " Outputs : 6 W £ w . : 5 &
: ‘ ; ‘ 3

N ‘ U
| ReLu —y— RelLu i L] !
—=—= [T =T ) el g C\)
GCN DGl

* Combine GCN and DGl for attributed multi-network embedding

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 34. No. 04. 2020.
[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint

arXiv:1609.02907 (2016).
[3] Velickovié, Petar, et al. "Deep graph infomax." arXiv preprint arXiv:1809.10341 (2018).




DMGI: Framework

 Single layer level embedding:
* GCN: H<">:g,.(X.A<">|w<"))=a(1575A<">15:%xw<">

e Global structure embedding:
() — Readout(H") —-0'( zz:h“ ) )

» Relation-type specific node embedding:

X 5 [ Original Jetwork X Comlpl X Corrupted Network
- Z log D (hﬁ' ), S(")) = Z log (1 - D (hi—l ). S(")) 4K S
5 NN /‘\(, ‘/‘\/)
vi €V Jj=1 .\ — . 74 *I —
— p 4P)) —hl & :
Rel. r N T/’ e ? -LConsensus Recularization---- Q \\\\*\ .
. ] Type1 - Consensus Regularization -
* Score function: p j E, [Ihw
D(H’§’):amfﬁM“W”)< P = -4l iy Im

X

o - Corrupt
Original Network X P Corrupted Network

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial

E Intelligence. Vol. 34. No. 04. 2020.
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DMGI: Framework (cont.)

* Joint modeling and consensus regularization:
* Consensus embedding Z:
~(r 2
to=[2- (" |rer})] - [2- o (" |pery)]

* Unsupervised loss:

T =L ol + B0 }

reR h®

uonedaid8y <
Aggregation >
Function

uonaun4

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial
E Intelligence. Vol. 34. No. 04. 2020.
- 180 -




DMGI: Framework (cont.) g‘@

* Joint modeling and consensus regularization:

X Corrupt X

H H Original Network Corrupted Network
* Attention mechanism: » 5 —
Readoui "\
s ‘ (7' o : i S
hi=Q({b” |reRr}) = a"n— i) p—— A —n L2

y ER T}'pt‘l 51) ; Q) i CULILINUS Reguial iZauol gQ rI Tl(ll)

() o] XN HlN
(r) Eap (q( ) h’L ) R, = = A"

a.: — < Type2 4 —[p]

Original Network

where (") is the feature vector of relation r-.
* Semi-supervised learning:

Teemi = 3 LT + ales + BI1O]| + YLsup
reR

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial
E Intelligence. Vol. 34. No. 04. 2020.
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DMGI: Experimental Results

* Node clustering and similarity search

e Metrics: NMI for clustering and Sim@5 for similarity
searc h | ACM IMDB DBLP Amazon

Method | "NMI Sim@5 | NMI Sim@5 | NMI Sim@5 | NMI | Sim@5

Deepwalk | 0310 0.710 | 0.117 0.490 | 0348 0.629 | 0.083 0.726
node2vec | 0309 0.710 | 0.123 0487 | 0382 0.629 | 0.074 0.738
GCN/GAT | 0.671 0867 | 0.176 0.565 | 0465 0.724 | 0.287 0.624

DGI 0640 0889 | 0.182 0.578 | 0.551 0.78 | 0.007  0.558
ANRL [ 0515 0814 | 0.163 0527 | 0332 0.720 | 0.166 0.763
CAN 0504 0836 | 0.074 0544 | 0323 0.792 | 0.001 0.537
DGCN [ 0.691 0.690 | 0.143 0.179 | 0462 0491 0.143  0.194
CMNA 0498 0363 | 0.152 0.069 | 0420 0511 0.070 0435
MNE [ 0.545 0.791 0.013 0482 | 0.136 0.711 0.001 0.395
mGCN [ 0.668 0873 | 0.183 0.550 | 0468 0.726 | 0.301 0.630
HAN 0.658 0.872 | 0.164 0.561 0472  0.779 | 0.029  0.495
- DMGI [ 0.687 0898 | 0.196 0.605 | 0409 0.766 | 0425 0.816
DMGla, | 0702  0.901 0.185 0586 | 0.554 0.798 | 0412  0.825

 Observations:
* DMGI outperforms all baselines;
 the attention mechanism is useful.

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial
E Intelligence. Vol. 34. No. 04. 2020.
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DMGI: Experimental Results (con

* Node classification on four real world datasets.
 Metrics: Macro-F1 and Micro-F1

] ACM | IMDB \ DBLP | Amazon
| MaF1 MiFl | MaF1 MiFl | MaFl MiF1 | MaF1 MiFl

Deepwalk | 0.739  0.748 | 0.532  0.550 | 0.533 0.537 | 0.663 0.671
node2vec | 0.741 0.749 | 0.533 0.550 | 0.543 0.547 | 0.662 0.669
GCN/GAT | 0.869 0.870 | 0.603 0.611 | 0.734 0.717 | 0.646 0.649
DGI 0.881 0.881 | 0.598 0.606 | 0.723 0.720 | 0.403 0.418
ANRL 0.819 0.820 | 0.573 0.576 | 0.770 0.699 | 0.692  0.690
CAN 0.590 0.636 | 0.577 0.588 | 0.702 0.694 | 0.498 0.499
DGCN 0.888 0.888 | 0.582 0.592 | 0.707 0.698 | 0.478 0.509
CMNA 0782 0.788 | 0.549 0.566 | 0.566 0.561 | 0.657 0.665
MNE 0.792  0.797 | 0.552 0.574 | 0.566 0.562 | 0.556 0.567
mGCN 0.858 0.860 | 0.623 0.630 | 0.725 0.713 | 0.660 0.661
HAN 0.878 __0.879 | 0599 0607 | 0.716 0708 | 0,501 _0.509
mmm) | DMGI 0.898 0.898 | 0.648 0.648 | 0.771 0.766 | 0.746  0.748
DMGlay, | 0.887  0.887 | 0.602  0.606 | 0.778 0.770 | 0.758 0.758

* DMGI improves classification performance.

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial
E Intelligence. Vol. 34. No. 04. 2020.
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Novel Multi-network Models e},

Temporal Lombinationof Combination of

. knowledge graph .. .
multi-network ge grap traditional multi-

Generalized multi-

with multi- network models
models network models
networks

* Temporal multiplex e Multi-view
. ;\_etworkl h h kr_10w|e<.jge graph *  Network of ‘X’ * Generalized NoN

Tzzgg:zl iny;zt:rgrap * High-arity *  Multi-layered * Attributed multi-
* - knowledge graph

dependent network hypergraph layered network
* Temporal NoN




Temporal Multi-network Models 3‘@

Temporal multi-view networks:

Temporal hypergraphs:
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[1] Zhang, Zhenghao, Jianbin Huang, and Qinglin Tan.
Embedding." arXiv preprint arXiv:2011.06346 (2020).

"Multi-view Dynamic Heterogeneous Information Network




Multi-view Knowledge Graph 2’@
 Definition: G; = (V;,&;),i=1,...,K

* Optional: features F;
* V;: entity set of the i-th view
e &;: (head, relation, tail) triple set of the i-th view

° Eg, Leonardo da
Vinci
Desc.: Italian
author L d Other title: La author Renaissance
. eonardo
Mona Lisa Gioconda polymath

da Vinci

birth place
birth place musetm P

museum

ion: th P
Louvre Caption: the Population:

View 1 Richelieu Wing View 1 60.36M
. Leonardo da
Mona Lisa portfolio PRI EIe[6) D / Ving \
da Vind BT author [ ortoene
ihi Year: 1503 Leonardo di ser
. Piero da Vinci
LG birth place
j Established: Continent:
1793 View 2 Europe J

E [1] Zhang, Qingheng, et al. "Multi-view knowledge graph embedding for entity alignment." arXiv preprint

arXiv:1906.02390 (2019).




High-arity Knowledge Graph O;@L

* Motivations:
* Existing knowledge graph: 2-arity
e E.g., author(Leonardo da Vinci, Mona Lisa)
* High-arity knowledge graph: higher-arity (high-order relation)
e E.g., studied(Hawking, PhD, Princeton)

* Future directions:
 How to construct high-arity knowledge graph?
* How to mine on high-arity knowledge graph?

, Leonardo

Collected

il masterpiece
83 Similar to

hypergraph

Created




Combination of Traditional Multi- g‘@
network Models

e Network of X:

e X: regular networks (covered), hypergraphs, multi-view
networks, etc.

* Multi-layered hypergraph:

* Generalization of multi-layered graph
e

e

— I I o .*......\,‘-\ gl
e / ! 00006
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Generalized Network of Networks?@g

* G1: Multi-layered Hierarchical NoN
SoftMappmg

/“\u )

. . . g ﬁ AN ..%
* G2: Soft Mapping Function 6 5 fﬁl)g
* 1-to-many or many-to-many z §
. M
G3: Map Edges to Networks ¢ B

" G: Main Network AW, N

1 -A1 28BS S \ ,‘ﬁoﬂ)
= A: Domain Networks NS C— N
= D: Cross-Layer Dep’ # A *r ':: 5/ Lt 55

= 0:FunctionV;— A \©‘/-’ i UL G o N

(dependence between < &
= @: FunctionE;—~ D

layer 3 and layer 4) *A4 <5 ‘ > :«5?"

Main Network Domain Networks
(layer-layer dependency) (control, com & physical nets)

[1] C. Chen, J. He, N. Bliss and H. Tong: “On the Connectivity of Multi-layered Networks: Models, Measures and Optimal Control”
ICDM 2015.

[2] C. Chen, J. He, N. Bliss and H. Tong: “Towards Optimal Connectivity on Multi-layered Networks”. IEEE Trans. Knowl. Data Eng., _ 191 -
29(10): 2332-2346 (2017)




Attributed Multi-layered Network?@

* Shapes: node types; colors: attributes

Attributed multi-view networks:

Attributed hypergraphs:

Attributed inter-dependent networks:

01
ol s
pH gme
! nw
M =

Attributed NoNs:
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Advanced Mining Algorithms

Traditional mining

Active multi- Adversarial multi- Temporal multi- tasks on novel
network learning network learning network learning multi-network
models

) ) e Adversarial multi-
e Active multi-network

. e network embeddin . *  Clustering/ranking on
alignment/association . . 8 *  Temporal multi-network . 4 &
. . e Adversarial multi- . generalized NoN
*  Active multi-network embedding
: network
embedding

alignment/association




Active Multi-network Alignment/Association qQ[ﬂ

* Motivation: human interaction with multi-network models
* Find the most informative node (set) for groundtruth query
* Maximize alignment/association accuracy on the rest of nodes

* Challenges:
 How to define and quantify node (set) information for query?
* How to identify informative node (set)?

e Future directions:
* Matching distribution-based certainty measurement
* Network derivative/influence function-based measurement

[1] Malmi, Eric, Aristides Gionis, and Evimaria Terzi. "Active network alignment: a matching-based
approach." Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017.

[2] Qinghai Zhou, Liangyue Li, Xintao Wu, Nan Cao, Lei Ying, Hanghang Tong. “Attent: Active Attributed Network Alignment.” -194 -
In Proceedings of the Web Conference 2021 (WWW ’21)




Active Multi-network Embedding [

* Motivation:
* Select nodes for query to optimize the embedding model

* Challenges:
* How to select the most informative nodes for specific tasks?
 How to handle multi-network structure (attributes)?

* Future directions:

* Combine active learning with multi-network GNN methods
* Multi-armed bandit for active node selection strategies

[1] Madhawa, Kaushalya, and Tsuyoshi Murata. "Active Learning for Node Classification: An
Evaluation." Entropy 22.10 (2020): 1164.

[2] Madhawa, Kaushalya, and Tsuyoshi Murata. "A multi-armed bandit approach for exploring partially observed
networks." Applied Network Science 4.1 (2019): 1-18.




Adversarial Multi-network AIignment/AssociationgQ@»

 Motivations:

* Existing adversarial attacks on network alignment are based on
derivative-based importance score

* But no work exits on adversarial defense

* Challenge:

* Compared to adversarial attack/defense in single network, multiple
networks may further complicate the defense process.

* Future direction:
* Adversarial training for multi-network alignment/association (w/ GNN)




Adversarial Multi-network Embedding g@u

* Motivations:
* Improve the robustness of embedding on multi-networks
* Generalized adversarial network embedding to multi-networks

* Challenges:

* Multi-network structure complicates the embedding generation
and discrimination

* Future directions:
* Combine multi-network GNN model w/ adversarial training

E [1] Dai, Quanyu, et al. "Adversarial network embedding." Proceedings of the AAAI Conference on Atrtificial

Intelligence. Vol. 32. No. 1. 2018.




Temporal Multi-network Embedding gilnc_ﬂ»

* Motivations:
* Real-world data is often dynamic
* Direct application of static method is costly

* Challenges:

 How to leverage dynamics (e.g., representation smoothness)
 How to improve efficiency w/o using static method

* Future directions:
* Matrix approximation to avoid unnecessary re-computations
* Dynamic multi-network embedding-based methods




Clustering/Ranking on Generalized NoN C§Qihl;;ﬂu

* Motivations:
* Generalized NoN is more complex than NoN model
* Ranking/clustering problems are also more complex

* Challenges:
* How to construct real-world data as generalized NoN
* How to generalized existing ranking/clustering methods

* Future directions:
* Hierarchical label propagation-based optimization method
* Novel random walk-based strategy for personalized ranking




Diverse Multi-network Applications Cj@;/

. . Multi-network for Multi-network
Multi-network for Multi-network for
. . . recommender for graph
knowledge graphs bio-informatics gras
system classification
* Hypergraphs for
recommender
*  Multiplex networks *  Multi-view network system *  Multiple structure-
for knowledge for neuroimage *  Multi-layered view learning for
graph completion analysis network for cross- graph classification
domain
recommendation




Multiplex Networks for Knowledge <

Graph Completion (KGC)

* Motivation: Mining missing triples from knowledge graph

* Challenges:

* KGs are often sparse (many missing links)
* How to leverage complementary knowledge from different sources

* Future Directions:
e Construct multiplex knowledge graph for KGs of different sources
* Multi-task learning: jointly learn the KGC with KG entity alignment

\4 ——_\,’ \\/ gl

/

Target KG HEEEp \,\/ng s Possible missing links
Y 4

Ty




Multi-view network for neuroimage analysis ZUDEHL

* Motivations:
* Neuroimaging: important information source for neurodegenerative disease
* Assist clinical diagnose with multi-network mining methods

* Challenges:

* Neuroimage is often multi-view and heterogeneous

* Future directions:
* Apply multi-view GNN-based model on the neuroimage classification

e E.g., On Parkinson’s Progression Markers Initiative (PPMI) data:

K ”‘ ﬁ Feature
W Muiti-View GCN Matrix | ]

Acquisition 1

Row-Wise
Inner Product

—®

Softmax

Pairwise
Feature Vector

” > Feature
Matrix Il

Multi-View GCN

Acquisition 2

[1] Zhang, Xi, et al. "Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson’s

E disease." AMIA Annual Symposium Proceedings. Vol. 2018. American Medical Informatics Association, 2018.




Hypergraphs for Recommender System g@u

* Motivations:
* Hypergraphs for bundle/high-order recommendation
* Focus: recommend a set of items

* Challenges:
* How to construct the hypergraphs for bundles
 How to incorporate the high-order relation of hypergraphs

e Future directions:

Bundles as heterogeneous hyperedges Bundles as multi network node set

“ ’—————N—\ 4’ T T~ N /a} \ p
I,//p’ F - E \\ E: N n \\

AR (O T e ! /04\0/0
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I

Multi-layered Network For Cross-domain <

Recommendation —4

 Motivations:
* How to transfer knowledge across domains in recommendation
e How to recommend items from different domains to users
* Challenges:
e How to handle cold start issue from certain domains of items?
e How to recommend bundles of items from different domains?
 Future directions:

e Multi-domain data -> multi-layered networks
* Random walk-based embedding

Q@ S
* GNN-based embedding Ng N S ,\';/
web posts ., videos
- . ) .;‘. \\: .
USel Iabels mtérest groups
s /. users
o ’/0 /z (J -— (‘*
~/ S
¢ &

[1] Jiang, Meng, et al. "Social recommendation with cross-domain transferable knowledge." IEEE transactions
on knowledge and data engineering 27.11 (2015): 3084-3097.




Multi-networks For Graph Classification X

* Motivations:
* Traditional graph classification: single graph
* Can not handle complicated objects containing complex structures

* Challenge:

* How to classify complex objects from multiple structure views?

* Future directions:
* Complex objects as multi-networks (bag of networks)
» Collectively leverage substructures and features from multi-networks

‘ "Single-Graph‘ \

—> !
. ‘
d ,
’ P

(a) Single-Graph Representation ' (b) Instance-Bag Representation
|

(c) Graph-Bag Representation

E [1] Wu, Jia, et al. "Multiple structure-view learning for graph classification.” IEEE transactions on neural networks and

learning systems 29.7 (2017): 3236-3251. -205 -




Summary (bl

* Background and Motivation:
* Multi-networks: multi-sourced, complex network data models
* Multi-network mining: challenging, important graph mining tools

 Multi-network models:
* Five types of representative multi-network data models
* A unified view of all the introduced multi-network models

* Multi-network mining algorithms:
» Algorithms for traditional/novel mining tasks and applications

* Future directions
* Novel multi-network models
* Advanced multi-network mining algorithms
* Diverse multi-network applications




References: Related Tutorials

* Hypergraph Learning: Methods, Tools and Applications in Medical Image Analysis (MICCAI 2019).
http://gaoyue.org/en/more/index.htm

* SiZhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings
of the 29th ACM International Conference on Information & Knowledge Management. Association for
Computing Machinery, New York, NY, USA.

* Jiawei Han, Yizhou Sun, Xifeng Yan, and PhilipS Yu.2010.Mining heterogeneous information networks. In
Tutorial at the 2010 ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD’10), Washington, DC.

* Haochen Chen, Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. "A tutorial on network embeddings." arXiv
preprint arXiv:1808.02590 (2018).



http://gaoyue.org/en/more/index.htm

References: Data and Code

* FINAL: https://sizhang2.web.illinois.edu/resources/FINAL-KDD16.zip

* FASCINATE: https://github.com/chenannie45/FASCINATE

*  MANE: http://www.ece.virginia.edu/~jl6gk/code/MANE.zip

* DMGI: https://github.com/pcy1302/DMGI

* CMM: https://github.com/muhanzhang/HyperLinkPrediction

* DHNE: https://github.com/tadpole/DHNE

* CrossRank: https://github.com/nijingchao/NoNCrossRank

*  NoNClus: https://github.com/nijingchao/NoNClus

* SyTE: https://github.com/boxindu/SYTE



https://sizhang2.web.illinois.edu/resources/FINAL-KDD16.zip
https://github.com/chenannie45/FASCINATE
http://www.ece.virginia.edu/~jl6qk/code/MANE.zip
https://github.com/pcy1302/DMGI
https://github.com/muhanzhang/HyperLinkPrediction
https://github.com/tadpole/DHNE
https://github.com/nijingchao/NoNCrossRank
https://github.com/nijingchao/NoNClus
https://github.com/boxindu/SYTE
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