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Networks and Graphs Are Everywhere

- 2 -

Social network Transportation network

Bitcoin transaction network Knowledge graph

Network = graph in this tutorial



Networks Are Multi-sourced
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Social media: Transaction network: 

PPI network: Knowledge graph:

yeast elegan

fly mouse



Example of Multi-networks
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[1] Aleta, Alberto, and Yamir Moreno. "Multilayer networks in a nutshell." Annual Review of Condensed Matter 
Physics 10 (2019): 45-62.

• Inter-dependent traffic networks



Example of Multi-networks
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• Set of team networks, connected by a project dependency network.

• Network Science of Teams

[1] G.S. McChrystal, C. Tantum, S. David, and F. Chris:. Team of teams: New rules of engagement for a complex world. Penguin, 2015.
[2] N. Contractor, L.A. DeChurch, A. Sawant, and X. Li: My Dream Team Assembler, 2013.
[3] W. Stefan, B. Jones, and B. Uzzi: The Increasing Dominance of Teams in the Production of Knowledge. Science, May 2007, 316:1036-1039.
[4] Network Science of Teams Project Website: http://team-net-work.org
[5] Li, L, and H. Tong: Network Science of Teams: Characterization, Prediction, and Optimization. WSDM 2018 tutorial

http://team-net-work.org/


Example of Multi-networks
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[1] https://www.rockwellautomation.com/en-us/capabilities/industrial-networks/design-guides.html

• Complex industrial networks:

Key characteristics: 
• Multiple layers
• Inter-dependent
• Attributed 
• Heterogeneous
• …



Single (Simple) Networks
• Basic definition: 𝒢 = (𝑉, 𝐸, 𝐀).

• Optional:

• Local characteristics: 
• Node: indecomposable, single entity

• Edge: single, pairwise, node-node relationship

• Global characteristics:
• Statistical properties: degree distribution, centrality, etc.

• Limitations:
• Node-network, network-network relationship 

• High-order node relationship

• Node relationship across multiple networks
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Directed
/undirected

Weighted
/unweighted

Homogeneous
/heterogeneous

Plain
/attributed

Different structural distribution

[1] Akoglu, Leman, Mary McGlohon, and Christos Faloutsos. "Oddball: Spotting anomalies in weighted 

graphs." Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Berlin, Heidelberg, 
2010.



• Motivation: 
• How to represent complex real-world data as network models? 

• How to handle the limitations of single & regular networks?

• Examples:

• And many more…

Multi-networks
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Node set-node set 
relationship 

Node-network 
hierarchical relationship

High-order node 
relationship

Relationship of multi-network 
of different distributions

[1] Zhang, Xi, et al. "Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson’s

disease." AMIA Annual Symposium Proceedings. Vol. 2018. American Medical Informatics Association, 2018.

[2] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on hypergraphs." arXiv
preprint arXiv:1809.02589 (2018).



Multi-network Mining Challenges

• C1. Data challenge
• Multi-network data models are more complex

• C2. Algorithmic challenge
• How to solve the multi-network mining problems?

• C3. Application challenge
• How to empower or enable multi-network applications?
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C1. Multi-networks Are Complex

• Volume: the number of nodes/edges is large

• Example:
• User identity alignment/matching: search several social networks
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2.7 billion users 756 million users

199 million users 478 million users

[1]Zhang, Si, and Hanghang Tong. "Network Alignment: Recent Advances and Future Directions." Proceedings of the 29th ACM 
International Conference on Information & Knowledge Management. 2020.
[2] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)



C1. Multi-networks Are Complex (cont’d)

• Variety: the structure is complicated

• Example:
• Interdependent infrastructure network
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Each domain has a
different network

Nodes from different 
domains are dependent

Domain network and inter-network 
dependence are attributed

[1] C. Chen, J. He, N. Bliss and H. Tong: “Towards Optimal Connectivity on Multi-layered Networks”. IEEE Trans. Knowl. Data Eng.,
29(10): 2332-2346 (2017)
[2] Gao, Jianxi, Daqing Li, and Shlomo Havlin. "From a single network to a network of networks." National Science Review 1.3
(2014): 346-356.



C1. Multi-networks Are Complex (cont’d)

• Velocity: multi-networks are changing dynamically 

• Example:
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…2.4 billion users

139 million users

2.6 billion users

186 million users

2019 2020 year

[1] Sun, Li, et al. "Dna: Dynamic social network alignment." 2019 IEEE International Conference on Big Data (Big Data). 

IEEE, 2019.
[2] Vijayan, Vipin, Dominic Critchlow, and Tijana Milenković. "Alignment of dynamic networks." Bioinformatics 33.14 (2017): 

i180-i189.



C1. Multi-networks Are Complex (cont’d)

• Veracity: multi-networks are noisy and incomplete

• Example:
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Bot users

Missing links

Fake reviews

Fake features

[1] Zhang, Jiawei, Bowen Dong, and S. Yu Philip. "Fakedetector: Effective fake news detection with deep diffusive neural 
network." 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020.
[2] Al Hasan, Mohammad, and Mohammed J. Zaki. "A survey of link prediction in social networks." Social network data analytics. 
Springer, Boston, MA, 2011. 243-275.



C2: Algorithmic Challenge - Prob. Formulation 

• How to encode multi-network structure/features?

• Examples:
• Multi-network alignment (cross-network node mapping): 

• Encode topological similarities

• Encode node/edge attribute similarities

• Hypergraph link prediction (high-order node relationship):
• Learn topological similarities of high-order objects

• Learn attribute similarities of high-order objects
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[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks in adjacency space." In Thirty-
Second AAAI Conference on Artificial Intelligence. 2018.



C2: Algorithmic Challenge - Complexity

• How to handle high time/space complexity?

• Example:
• Multi-network association (cross-network node proximity):
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𝐺1 𝐺2
𝑺𝑖𝑘
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𝐺1 𝐺2
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𝐺3

𝑺𝑖𝑗
IsoRank:
Time: 𝑂(#𝑖𝑡𝑒𝑟 ∗ (𝑚2+𝑛2))
Space: 𝑂(𝑛2)

Fixed-point iteration:
Time: 𝑂(#𝑖𝑡𝑒𝑟 ∗ (𝑚3+𝑛3))
Space: 𝑂(𝑛3)

[1] Bahmani, Bahman, Abdur Chowdhury, and Ashish Goel. "Fast incremental and personalized pagerank." arXiv preprint 

arXiv:1006.2880 (2010).
[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Pairwise global alignment of protein interaction networks by matching 

neighborhood topology." Annual International Conference on Research in Computational Molecular Biology. Springer, 
Berlin, Heidelberg, 2007.

𝑛

𝑛

𝑛 𝑛
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C2: Algorithmic Challenge - Computation

• Multi-network -> single (simple) network?
• Transformation itself is non-trivial

• Information loss

• Potentially increase the complexity

• Examples:
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May not work!

… …
Large time/space complexityNode collection info lossNon-trivial transformation

Process each individual network



C3. Application Challenge

• How to empower or enable multi-network applications?

• Example:
• Ranking/clustering on multiple regular networks

• Classification on complex multi-network models
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𝐺1

𝐺2

𝐺4

𝐺3

Multi-network clustering Multi-network classification
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Multi-Networks: Where Are We?
▪ Single (Simple) Networks
• At Macro-level: Nodes Linked by Edges 

(e.g., an Adjacency Matrix)

• At Micro-level: Node/Link as Atom

▪ Beyond a Single Adj. Matrix

▪ High-order Structure
• Graphlet [Neville+ 2016]

• Meta-Path/Structure [Sun & Han 2012]

• Motif/High-order Structure [Benson+ 2016]

• Graph Vocabulary [Koutra, Faloutsos+ 2014]

• HIN [Sun & Han 2012-2020]

• Tensor [Faloutsos+ 2008-2019]

• HSN [Yu+ 2013-2019]

• Multiplex [Kanawati 2015, Porter 2014]

1

2
3

4

4

3

2

1

4

3

2

1

4321

▪ This Tutorial: Multi-Networks

• At Macro-level: Set of Networks  Connected by 
Another Network

• Key Advantages: Hierarchical Modeling, Towards 
Multi-Network Model Unification.

• At Micro-level: Hidden Networks Deep Inside a 
Node/Link

• Key Advantages: Collective Mining with Focused 
Knowledge Transfer



Roadmap
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Introduction

Part I: Multi-network Data Models

Part II: Multi-network Mining Algorithms

Part III: Multi-network Future Directions



Overview of Part I
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Multi-network Data Models

Multi-view 
Network

Inter-dependent 
Network

Hypergraph
Network of 
Networks

Multiplex
Network



Network: Definition
• Definition of network

• Basic: 𝒢 = (𝑉, 𝐸, 𝐀).

• 𝑉: node set, 𝐸: edge set, 𝐀 : adjacency matrix of the network.

• Optional: node attribute matrix 𝐗, edge attribute matrix 𝐘.
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A
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C D 𝒢

E
G
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1 1 1

1 0 0

1 1 0

0 1 0

1 0 1

0 1 1

1 0 1

0 0 1

1 0 0

A
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C

D

F

E

G

H

I

𝐗

𝑒1

𝑒5
𝑒4 𝑒2

𝑒7

𝑒6

𝑒9
𝑒8

𝑒3

0 0 1 1

1 0 1 1

0 1 1 0

1 0 0 1

0 1 1 0

1 1 0 1

0 1 1 1

1 1 0 0

1 1 1 0𝑒9

𝑒8

𝑒7

𝑒6

𝑒5

𝑒4

𝑒3

𝑒2

𝑒1

𝐘



Multi-view Network: Definition
• A.k.a. multi-relation network, or multi-dimension network

• Definition of multi-view network
• 𝒢𝑖 = (𝑉, 𝐸𝑖 , 𝐀𝑖).

• For the same set of nodes, their relations can be formed from

different views/aspects.

• 𝑉: node set, 𝐸𝑖 and 𝐀𝑖: edge set and adjacency matrix of the 𝑖-th
view network.

• It can be represented as a tensor with a size 𝑉 × 𝑉 × 𝐼.
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A B C D

A B

C
B

𝒢1

𝒢2

𝒢3

C
D

D
A

[1] Kanawati, Rushed. "Multiplex Network Mining: A Brief Survey." IEEE Intell. Informatics Bull. 16.1 (2015): 24-

27.

Multi-network Data Model #1



Multi-view Network: Application
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Aircraft flow monitoring from different
airlines in Europe.

Multi-network Data Model #1



Multiplex Network: Definition
• Definition of multiplex network

• 𝒢𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐀𝑖).

• 𝑉𝑖: nodes for the 𝑖-th network, 𝐸𝑖: edges for the 𝑖-th network.

• 𝐀𝑖: the 𝑖-th network’s adjacency matrix.

• 𝑉𝑖 ∩ 𝑉𝑗 ≠∅. 𝑉𝑖 and 𝑉𝑗 have some common nodes.

• Multi-view network is a special case of multiplex network.
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A B C

B

C
B

𝒢1

𝒢2

𝒢3

C
D

D
A E

[1] Kivelä, Mikko, et al. "Multilayer networks." Journal of complex networks 2.3 (2014): 203-271.

Multi-network Data Model #2



Multiplex Network: Applications
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Fraud detection in the economy domain.

[1] Zhang, Si, and Hanghang Tong. "Network Alignment: Recent Advances and Future Directions." Proceedings of the 29th ACM 
International Conference on Information & Knowledge Management. 2020.

Multi-network Data Model #2



Multiplex Network: Applications
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Friend recommendation.

[1] Zhang, Si, and Hanghang Tong. "Network Alignment: Recent Advances and Future Directions." Proceedings of the 29th ACM 
International Conference on Information & Knowledge Management. 2020.

Multi-network Data Model #2



Inter-Dependent Network: Definition
• Definition of Inter-dependent network

• 𝒢𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐀𝑖).

• G(𝑑) is the graph level dependency matrix.

• G𝑖𝑗
𝑑 = 1: we have a node-level dependency matrix 𝐃(𝑖𝑗).

• 𝐃𝑛1𝑛2
𝑖𝑗

= 1: the 𝑛1-th node in 𝒢𝑖 depends on the 𝑛2-th node in 𝒢𝑗.
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A B C D

F E

K
J

𝒢1

𝒢2

𝒢3

G
H

L
I

Dependency relation

Inner-network
connectivity

[1] Chen Chen, Hanghang Tong, Lei Xie, Lei Ying, and Qing He. 2017. Cross-Dependency Inference in Multi-Layered Networks: A 
Collaborative Filtering Perspective. ACM Trans. Knowl. Discov. Data 11, 4, Article 42 (August 2017), 26 pages. 
DOI:https://doi.org/10.1145/3056562

Multi-network Data Model #3



Inter-Dependent Network: Applications

- 28 -

Drug discovery in
bio-system.

Team recommendation in
collaboration platforms.

[1] Chen Chen, Hanghang Tong, Lei Xie, Lei Ying, and Qing He. 2017. Cross-Dependency Inference in Multi-Layered Networks: A 
Collaborative Filtering Perspective. ACM Trans. Knowl. Discov. Data 11, 4, Article 42 (August 2017), 26 pages. 
DOI:https://doi.org/10.1145/3056562

Multi-network Data Model #3



Hypergraphs: Definition
• Undirected hypergraphs

• 𝒢𝑢 = (𝑉𝑢, 𝐸𝑢, 𝐇𝑢).

• 𝑉𝑢: node set, 𝐸𝑢: hyperedge set, 𝐇𝑢: incidence matrix.

• Simple undirected network: 1-to-1 relation.

• Undirected hypergraph: n-to-m relation.

• Multi-layered network degenerates to undirected hypergraph:
• Do not have within domain networks
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A

B

C

D

E

1 1 0

1 0 0

1 0 1

1 0 0

0 1 1

A

B

C

D

E

𝑒1 𝑒2 𝑒3

𝑒1

𝑒2

𝑒3

A B C D

A E

CE

𝑙1

𝑙2

𝑙3

[1] Klamt, Steffen, Utz-Uwe Haus, and Fabian Theis. "Hypergraphs and cellular networks." PLoS computational biology 5.5 
(2009): e1000385.

Multi-network Data Model #4



Hypergraphs: Definition
• Directed hypergraphs

• 𝒢𝑑 = (𝑉𝑑 , 𝐸𝑑 , 𝐇𝑑).

• 𝑉𝑑: node set, 𝐸𝑑: hyperedge set, 𝐇𝑑: incidence matrix.

• Direction between every pair of hyperedge.

• Simple directed network: 1-to-1 directed relation.

• Directed hypergraph: n-to-m directed relation.
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A

B

C

D E

Directed hyperedges:
• 𝑒1: 𝐴 → 𝐵
• 𝑒2: 𝐴 + 𝐵 → 𝐶 + 𝐷
• 𝑒3: 𝐷 → 𝐸

-1 -1 0

1 -1 0

0 1 0

0 1 -1

0 0 1

A

B

C

D

E

𝑒1 𝑒2 𝑒3

[1] Klamt, Steffen, Utz-Uwe Haus, and Fabian Theis. "Hypergraphs and cellular networks." PLoS computational biology 5.5 
(2009): e1000385.

Multi-network Data Model #4



Hypergraphs: Definition
• Heterogeneous hypergraphs:

• Nodes/hyperedges of different types.

• K-uniform hypergraphs:
• Every hyperedge contains K nodes.

• Dynamic hypergraphs
• Time-evolving hypergraphs with changing nodes/hyperedges.
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…

[1] Klamt, Steffen, Utz-Uwe Haus, and Fabian Theis. "Hypergraphs and cellular networks." PLoS computational biology 5.5 

(2009): e1000385.

[2] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
[3] Jiang, Jianwen, et al. "Dynamic Hypergraph Neural Networks." IJCAI. 2019.

Multi-network Data Model #4



Hypergraph: Applications
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Protein complexes by tandem affinity 
purification (TAP) on PPI network

Directed chemical reaction Logical networks

Heterogeneous hypergraph in 
social networks

[1] Klamt, Steffen, Utz-Uwe Haus, and Fabian Theis. "Hypergraphs and cellular networks." PLoS computational biology 5.5 

(2009): e1000385.

[2] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[3] Li, Dong, et al. "Link prediction in social networks based on hypergraph." Proceedings of the 22nd International Conference on 
World Wide Web. 2013.

Multi-network Data Model #4



Network of Networks (NoN): Definition
• Definition of NoN:

• Main network: 𝐺(𝑚) = {𝑉
𝑚
, 𝐸

𝑚
, 𝐀

(𝑚)
}.

• Domain-specific network: 𝐺𝑖
(𝑑)

= {𝑉𝑖
𝑑 , 𝐸𝑖

𝑑 , 𝐀𝑖
𝑑 } , 𝑖 = 1,… , 𝑔 .
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1

23

4 5

6 7

8

9 10

Main networkDomain-specific 
network 1

Domain-specific 
network 2

Domain-specific 
network 3

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM 
SIGKDD international conference on Knowledge discovery and data mining. 2014.

Multi-network Data Model #5



NoN: Applications
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[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM 
SIGKDD international conference on Knowledge discovery and data mining. 2014.

Multi-network Data Model #5



NoN: Applications
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…

Telecommunication network Brain network

[1] https://phys.org/news/2014-12-scientists-worldwide-network-networks.html
[2] https://www.chrisharrison.net/index.php/Visualizations/InternetMap

Multi-network Data Model #5

https://phys.org/news/2014-12-scientists-worldwide-network-networks.html
https://www.chrisharrison.net/index.php/Visualizations/InternetMap


Summary: Multi-layered Networks
• General definition

• Basic definition: 𝒢𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐀𝑖) is the 𝑖-th layer network.

• Optional designs:

• Node set: 𝑉𝑖, 𝑉𝑗 can have overlap nodes.
• Multi-view network: 𝑉𝑖 = 𝑉𝑗, for any 𝑖, 𝑗.

• Multiplex network: 𝑉𝑖 ∩ 𝑉𝑗 ≠ ∅.

• Inter-dependent network: 𝑉𝑖 ∩ 𝑉𝑗 = ∅.

• Graph level cross-layer relation.
• Multi-view network: no relation.

• Inter-dependent network: dependency relation.

• NoN: association relation.

• Node level cross-layer relation.
• Multi-view network, Hypergraph: alignment.

• Inter-dependent network: dependency relation.
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Roadmap
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Introduction

Part I: Multi-network Data Models

Part II: Multi-network Mining Algorithms

Part III: Multi-network Future Directions



Overview of Part II

- 38 -

Multi-network Mining Algorithms

Ranking Classification Clustering 
Hyperlink 
prediction

Multi-
network 

association

Multi-
network 

embedding

• Consistency 
based 
homogeneous

• Consistency 
based 
heterogeneous

• Label 
propagation-
based multi-
view/domain 
classification

• GNN-based 
embedding

• Contrastive 
learning for 
multi-view 

• NMF-based 
method

• Autoencoder
-based 
embedding

• GNN-based 
embedding

• Label 
propagation-
based method

• w/o attribute
• w/ attribute
• Dependency 

inference
• Network

alignment

• Multi-view
network
clustering 

• NoN
clustering 

• MF-based 
embedding

• Random 
walk-based 
embedding

• GNN-based 
embedding



Preliminaries: Label Propagation for Graph-
based Semi-supervised Learning (GSSL)
• Given: 

• An input data set with N instances {𝑥1, … , 𝑥𝑙 , 𝑥𝑙+1, … , 𝑥𝑁}
• {𝑥1, … , 𝑥𝑙}: labeled as {𝑦1, … , 𝑦𝑙}; {𝑥𝑙+1, … , 𝑥𝑁}: unlabeled (𝑦𝑙+1, … , 𝑦𝑁 = 0)

• Output: 
• The predicted labels for {𝑥𝑙+1, … , 𝑥𝑁}

• General method of GSSL:
• Undirected, connected, and weighted graph 𝒢 = (𝒱, ℰ, 𝐀)

min
𝑓𝑖 𝑖=1

𝑁
෍

𝑖,𝑗=1

𝑁

𝐀 𝑖, 𝑗 𝑓𝑖 − 𝑓𝑗
2
+ 𝜆෍

𝑖=1

𝑁

𝑓𝑖 − 𝑦𝑖
2

min
𝐅

tr 𝐅T𝐋𝐅 + 𝜆 |𝐅 − 𝐘| 𝐹
2

• Notation: 
• F: predicted label matrix; Y: groundtruth label matrix
• L: graph Laplacian; 
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Matrix form w/ multi-class

[1] Wu, Jia, et al. "Bag constrained structure pattern mining for multi-graph classification." IEEE transactions 
on knowledge and data engineering 26.10 (2014): 2382-2396.

• Similar formulation: SimRank
• Intuition: how soon two random 

surfers (i, j) are expected to meet



MCS: Multidomain Classification 
With Domain Selection
• Goal: improve multidomain classification; select relevant domains

• Given:
• 𝒢𝑚 = (𝒱𝑚, ℰ𝑚, 𝐀𝑚) with 𝑚 = 1,… ,𝑀, 𝐀𝑚 ∈ ℝ𝑁𝑚×𝑁𝑚

• Target domain 𝑚, and labeled nodes from all domains

• Cross-domain relations: 𝐒𝑚,𝑚′
𝑚′=1,𝑚≠𝑚

𝑀
(𝐒𝑚,𝑚′ ∈ ℝ𝑁𝑚×𝑁𝑚′)

• Output: 
• The unlabeled nodes from target domain 𝑚
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Multi-view networks can 
have different node set

One-to-many

[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain 
selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.



MCS: Key Ideas
• Intuition:

• 𝐒𝑚,𝑚′ enables cross-domain label propagation

• Label consistency in target domain 𝑚

• Label consistency in transferred labels from target domain

• Mathematically:

• σ𝑖,𝑗𝐀𝑚′ 𝑖, 𝑗 𝐒𝑚′,𝑚 𝐟
𝑖
− 𝐒𝑚′,𝑚 𝐟

𝑗

2
should be small

• 𝐟: a node label vector of 𝑚-th domain

• 𝐒𝑚′,𝑚 𝐟: label estimation of the corresponding nodes in the 𝑚’-th domain
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Target domain

Label consistency

[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain 
selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.



MCS: Formulation
• Objective function:

• : scaled graph Laplacian

• ω𝑚′: other domains’ contributes to the label estimation in the 
m-th domain

• 𝜆, 𝛾: weights for regularizers

- 42 -

Consistency of 
target domain

Label consistency of 
other domains

Label regularizer

Transformed adjacency 
matrix from domain m’

[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain 
selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.



MCS: Algorithm

• Decompose into two subproblems
• S1. Instance-prediction subproblem for instance label vector

• S2. Domain-weighting subproblem for domain weights 

Where 𝐯 = [𝑣1, … , 𝑣𝑀] w/o 𝑣𝑚, 𝑣1 ≤ 𝑣2 ≤ ⋯ ≤ 𝑣𝑀 ,𝑣𝑚′ = 𝐟𝐓𝐋𝑚′,𝑚𝐟

• Solution: 
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[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain 
selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.

Time complexity: 
𝑂(𝑖𝑡𝑒𝑟 ∗ (𝐸 + 𝑀2))



MCS: Experiments 
• Dataset: cancer subtype classification problem

• Target domain: 𝐺1

• Outperforms all baselines in other domains as well
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[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain 
selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.



MCS: Experiments 
• Synthetic data, domain selection evaluation

• Able to select relevant domains with the proposed formulation
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[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain 
selection." IEEE transactions on neural networks and learning systems 30.1 (2018): 269-283.



MCS: Relation with Other Methods

• SMGI: Multi-graph label propagation by sparse integration:

• Co-regularized Multidomain Graph Clustering (CGC) With 
Focused Domain:
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[1] Chen, Chuan, et al. "A semisupervised classification approach for multidomain networks with domain selection." IEEE transactions 

on neural networks and learning systems 30.1 (2018): 269-283.
[2] M. Karasuyama and H. Mamitsuka, “Multiple graph label propagation by sparse integration,” IEEE Trans. Neural Netw. Learn. Syst., 2013
[3] W. Cheng, Z. Guo, X. Zhang, and W. Wang,“CGC: A flexible and robust approach to integrating co-regularized multi-domain graph for 
clustering,” Trans. Knowl. Discovery Data, vol. 10, no. 4, 2015, Art. no. 46.

𝜇: selecting domains

NMF approach



MVGL: Multi-View Graph Learning
• Motivation:

• There exists a unified latent graph for all views

• Jointly learn the latent graph with classification

• Challenges:
• C1. How to construct a robust graph from multiple views? 

• C2. How to ensure the sparsity of graph construction? 

• C3. How to integrate label propagation with graph construction?
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[1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation." 2017 IEEE International 

Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive 

label propagation." 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017..



MVGL: Problem Definition

• Given: 
• 𝒳 = {𝐗(𝑣)}, 𝑣 = 1,··· , 𝑉: a multi-view dataset

• Remarks:

• N samples in each view, 𝐗(𝑣) = 𝑥1
𝑣 ,··· , 𝑥𝑙

𝑣 , 𝑥𝑙+1
𝑣 ,···, 𝑥𝑁

𝑣 ∈ ℝ𝑑 𝑣 ×𝑁

• The first 𝑙 samples in each view are labeled

• 𝑑(𝑣) is the dimension of samples in the 𝑣-th view

• Output:
• The labels for the unlabeled samples
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[1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation." 2017 IEEE International 

Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive 

label propagation." 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017..



MVGL: Key Ideas

• C1. How to construct a robust graph from multiple views? 
• Learn shared latent factors from all the views

• Build a common graph based on the shared factors

• These factors are view-independent features

• C2. How to ensure the sparsity of the graph? 
• Sparse constraint based on k-NN is incorporated to the model

• C3. How to integrate label propagation with graph 
construction process?

• Joint learning framework to integrate graph construction and 
label propagation.
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[1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation." 2017 IEEE International 

Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive 

label propagation." 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017..



MVGL: Formulation 

min
𝐔𝑣,𝐑,𝐖,𝐒,𝐅

෍

𝑣=1

𝑉

𝐗 𝑣 − 𝐔𝑣𝐑
𝐹

2
− 𝜆1 𝐖

𝐹

2

+𝜆2𝑡𝑟 𝐅T𝐋𝐅 + 𝛾 𝐘 − 𝐅
𝐹

2

+𝜆3(෍

𝑣=1

𝑉

𝐔𝑣 𝐹

2
+ 𝐑

𝐹

2
)

s.t. 𝐖 = 𝐒⊙ 𝐑T𝐑 ,σ𝑗
𝑁 𝐒𝑖𝑗 = 𝑘 , 𝐒𝑖𝑖 = 0
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Feature decomposition
Graph construction 
and sparsification

Adaptive label propagation 𝐋 = 𝐃 −𝐖

Sparsification constraint; R: latent 
representation shared by all views

K-NN selection

Regularizer

[1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation." 2017 IEEE International 

Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive 

label propagation." 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017..



MVGL: Experiments 
• Node classification on online news dataset (BBC, Reuters, The Guardian):

• Nodes: articles, labels: topic classes

• Multi-view methods like FeaFusion and GraphFusion usually perform better than 
single-view methods

• The proposed MVGL approach outperforms the single-view and multi-view 
baselines when there are very limited information
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[1] Li, Sheng, et al. "Multi-view graph learning with adaptive label propagation." 2017 IEEE International 

Conference on Big Data (Big Data). IEEE, 2017. Li, Sheng, et al. "Multi-view graph learning with adaptive 

label propagation." 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017..

# of labeled samples randomly chosen from each class
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Multi-GCN: Graph Convolutional 
Networks for Multi-View Networks  

• Motivation:
• Graph Neural Networks prevail in many graph learning problems

• Latent subspace-based method performs well in multi-view tasks

• Key questions:
• How to apply GNN techniques to multi-view networks?

• How to construct a latent subspace shared by multiple views?

• Key ideas:
• Merge subspace representations of multiple views

• Graph-based manifold ranking for latent network generation

• Learn classification task by GNNs on latent network
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[1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view 

networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 
01. 2019.



Multi-GCN: Overview
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Multi-view fusion

Manifold ranking

Input to GCN

[1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view 

networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 
01. 2019.



Multi-GCN: Preliminaries 

• Grassman manifold:
• A set of k-dimensional linear subspaces in ℝ𝑛×𝑘

• Each unique subspace is mapped to a unique point on manifold

• Points on the manifold are represented by orthonormal matrix

• Projection distance between two subspaces 𝑌1, 𝑌2[2]:
• 𝑑𝑝𝑟𝑜𝑗

2 𝑌1, 𝑌2 = σ𝑖=1
𝑘 sin2 𝜃𝑖 = 𝑘 − 𝑡𝑟(𝑌1𝑌1

𝑇𝑌2𝑌2
𝑇)
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[1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view networks, with 

applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01. 2019.
[2] Dong, Xiaowen, et al. "Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds." IEEE Transactions on signal 
processing 62.4 (2013): 905-918.



Multi-GCN: Model
• Merge subspace representations:

• Step 1: min
𝐔𝑖∈ℝ

𝑛×𝑘
𝑡𝑟(𝐔𝑖

𝑇𝐋𝑖𝐔𝑖) s.t. 𝐔𝑖
𝑇𝐔𝑖 = 𝐈

Where 𝐋𝑖 = 𝐃𝑖
−1/2

𝐃𝑖 −𝐖𝑖 𝐃𝑖
−1/2

• Step 2: min
𝐔𝑖∈ℝ

𝑛×𝑘
σ𝑖=1
𝑀 𝑡𝑟 𝐔𝑇𝐋𝑖𝐔 + 𝛼𝑖[𝑘𝑀 − 𝑡𝑟(𝐔𝐔T𝐔𝑖𝐔𝑖

𝑇)]

s.t. 𝐔𝑖
𝑇𝐔𝑖 = 𝐈

• Solution: the first k eigenvectors of modified Laplacian;

𝐋𝑚𝑜𝑑 = σ𝑖=1
𝑀 𝐋𝑖 − σ𝑖=1

𝑀 𝛼𝑖𝐔𝑖𝐔𝑖
𝑇
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Multi-view fusion

Clustering

[1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view 

networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 
01. 2019.



Multi-GCN: Model (cont’d)

• Graph-Based Manifold Ranking
• Closed form solution: 𝐟∗ = 𝐈 − 𝛽𝐋𝑚𝑜𝑑

−1𝐪

• Adding salient edges

• Pruning non-salient edges

• Input the modified and augmented graph to GNN 

• Complexity: 𝑂(𝑀𝑁3 +𝑀𝑁2𝐾 +𝑁2𝐶2 + 𝑡𝑁)
• M: # of views; N: # of nodes per view; K,C: small constants
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Manifold ranking

[1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view 

networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 
01. 2019.



Multi-GCN: Experiments
• Classification accuracy on mobile phone data:

• Multi-GCN outperforms existing state-of-the-art benchmarks
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[1] Khan, Muhammad Raza, and Joshua E. Blumenstock. "Multi-gcn: Graph convolutional networks for multi-view 

networks, with applications to global poverty." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 
01. 2019.



Multi-GCN: Experiments 
• Classification accuracy on citation networks:

• Multi-GCN outperforms existing representative benchmarks
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Contrastive Multi-View 
Representation Learning on Graphs

• Motivation
• Multi-view visual representation learning: image classification [1]

• Data augmentations for multiple views: for contrastive learning [2]

• E.g., 

• Q: How to apply these techniques to graph representation?
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[1] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning of visual 

representations. arXiv preprint arXiv:2002.05709, 2020 

[2] Tian, Yonglong, Dilip Krishnan, and Phillip Isola. "Contrastive multiview coding." Computer Vision–ECCV 2020: 16th 

European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16. Springer International Publishing, 

2020.

Original Crop and resize

Rotate Cutout Multi-view representation learning for image



Key Ideas
• Structural augmentation mechanism:

• Transform a sample graph into a correlated view

• Sub-sample from all views

• Node and graph representation:
• One GNN model for each view for node representation

• Shared MLP layer for graph representation

• A discriminator to contrastive learning
• Contrast node representation of one view w/ graph 

representation of another view

- 64 -

[1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on 

graphs." International Conference on Machine Learning. PMLR, 2020.

Graph 
representation

Node 
representation

?



𝐒

Model Overview
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Graph augmentation GNN for node 
representation

GNN for graph 
representation

Contrastive 
learning

Diffusion: 

𝐀

Maximize the mutual information of node 
and graph representation of different views

[1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on 

graphs." International Conference on Machine Learning. PMLR, 2020.



Training Details
• Ideas：

• Maximize the MI between two views using deep InfoMax [2]
• Simultaneously encode local (adjacency matrix) & global info. (diffusion matrix)

• Objective function:

• Representation inference:
• Graph: ℎ = ℎ𝑔

𝛼 + ℎ𝑔
𝛽

, node: 𝐇 = 𝐇𝛼 + 𝐇𝛽

• Negative sampling: 
• Random feature permutation
• Adjacency matrix corruption
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Number of views Number of nodes 
in each graph view

Implemented by 

𝐷 ℎ𝑖
𝛼 , ℎ𝑔

𝛽
=< ℎ𝑖

𝛼 , ℎ𝑔
𝛽
>

[1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on 

graphs." International Conference on Machine Learning. PMLR, 2020.

[2] Velickovic, Petar, et al. "Deep Graph Infomax." ICLR (Poster) 2.3 (2019): 4.



Experiments
• Node classification accuracy for supervised and 

unsupervised models:
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[1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on 

graphs." International Conference on Machine Learning. PMLR, 2020.

Better than supervised 
methods!



Experiments
• Node/graph classification accuracy:

• Contrasting local-global outperforms other methods

• Contrasting encodings from adjacency and PPR views performs 
better
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[1] Hassani, Kaveh, and Amir Hosein Khasahmadi. "Contrastive multi-view representation learning on 

graphs." International Conference on Machine Learning. PMLR, 2020.
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Background: Hyperlink Prediction

• Problem settings:
• Transductive setting: 

• Given: a tuple (H, D), where H = (V,E) is an incomplete hypernetwork
• D is a set of candidate hyperlinks
• Find: the most likely hyperlinks that are missing from H from D

• Inductive setting: 
• Given: H = (V,E) is a given incomplete hypernetwork
• Find: the the most likely hyperlinks that are missing from H from D
• D is only seen when testing
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CMM: Coordinated Matrix Minimization

• Problem definition (transductive setting):
• Given 𝐻 = 𝑉, 𝐸 , incidence matrix: S

• Find true hyperlinks in candidate set 𝐷 (incidence matrix: 𝐔)

• Observation:
• Given incidence matrix 𝐒 = 0,1 ∈ ℝ𝑛×𝑚:

• Hyperlink s (a column vector 𝐒) -> 𝐬𝐬𝐓 vertex adjacency space 

• Abundant existing link prediction techniques for pairwise relation

• Key Ideas:
• Infer the pairwise relationships in the adjacency space

• Find the missing hyperlinks through constrained optimization

• Two-step EM style optimization method
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[1] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks 

in adjacency space." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.



CMM: Formulation 

• Objective function:
min
𝚲,𝐖

||𝐀 + 𝐔𝚲𝐔T −𝐖𝐖T||𝐹
2

Subject to 𝜆𝑖 ∈ 0,1 , 𝑖 = 1,… ,𝑚′

𝐖 ≥ 𝟎

• E step (fix 𝐖):
• min

𝚲
||𝐀 + 𝐔𝚲𝐔T −𝐖𝐖T||𝐹

2 , Subject to 𝜆𝑖 ∈ 0,1 , 𝑖 = 1,… ,𝑚′

• M step (fix 𝚲):
• min

𝐖
||𝐀 + 𝐔𝚲𝐔T −𝐖𝐖T||𝐹

2 , Subject to 𝐖 ≥ 𝟎
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𝐒, 𝚫𝐒 [𝐒, 𝚫𝐒]T= 𝐀+ 𝚫𝐀
Complete 
incidence 
matrix

𝚫𝐀 = 𝐔𝚲𝐔T

𝚲 = 𝑑𝑖𝑎𝑔([𝜆1, … , 𝜆𝑚′ ]): 
indicator matrix for columns of 𝐔
𝜆𝑖 = 1: hyperlink 𝑢𝑖 is a column in 𝚫𝐒
𝜆𝑖 = 0: otherwise

[1] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks 

in adjacency space." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.



CMM: Algorithm 
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Updating details:

• E step: min
𝐱

||𝐂𝐱 − 𝐝||2
2 , 𝑠. 𝑡. 𝐱 ∈ 0,1 𝑚′

(𝐂 = 𝐜1, … , 𝐜𝑚′
T, 𝐜𝑖 = vec(𝐮𝑖𝐮𝑖

T))

• M step: 𝐱new = 𝐱 − α𝐇−1∇𝑓(𝐱) +,𝐱 = vec 𝐖 ,𝐇:Hessian matrix of 𝑓(𝐱)

[1] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks 

in adjacency space." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.



CMM: Experiments 
• Task: Predicting metabolic reactions

• Number of recovered reactions under different numbers of 
missing reactions:

• CMM generally achieves the best performance
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[1] Zhang, Muhan, Zhicheng Cui, Shali Jiang, and Yixin Chen. "Beyond link prediction: Predicting hyperlinks 

in adjacency space." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.
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DHNE: Deep Hyper-Network Embedding

• Observations:
• Indecomposablity: the hyperedges are usually indecomposable. 

• Nodes in hyperedge have strong relationship ≠ nodes in subset have 
a strong relationship. 

• Structure Preserving: local and global structure
• Local structures: not sufficient because of network sparsity

• Global structures: use the neighborhood structure
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User-movie-tag: strong relation
User-tag: not strong 
Many missing links 

[1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial 

Intelligence. 2018.



DHNE: Key Ideas
• Indecomposablity issue:

• Indecomposable tuple-wise similarity function

• Defined over all the nodes in a hyperedge

• Tuple-wise similarity function as a deep neural network 

• Structure preserving issue:
• Deep autoencoder to learn node representations 

• Reconstruct neighborhood structures

• Nodes with similar neighborhood structures -> similar embeddings
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Comparison with other 
expansion method

Proposed tuple-wise 
similarity

[1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial 

Intelligence. 2018.



DHNE: Model Overview 
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Total loss:

[1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial 

Intelligence. 2018.



DHNE: Experiments 
• Task: link prediction on GPS data ((user, location, activity) relations 

are used for building the hypernetwork)
• left: ROC curve on GPS; right: Performance for link prediction on networks 

of different sparsity

• Achieves significant improvements over the baselines

- 79 -
[1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial 

Intelligence. 2018.



DHNE: Experiments 

• Hyperlink prediction AUC value:

• DHNE outperforms all baselines

- 80 -
[1] Tu, Ke, et al. "Structural deep embedding for hyper-networks." Thirty-Second AAAI Conference on Artificial 

Intelligence. 2018.
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HyperGCN: Graph Convolutional 
Networks for Hypergraphs

• Motivation:
• How to apply Graph Convolutional Networks on hypergraphs?

• First trial:
• Apply clique expansion on each hyperedge -> regular graph

• GNNs for the transformed regular graph

• Disadvantage: 𝑂 𝑛2 edges in each hyperedge of regular graph

• Question:
• How to transform hyperedges to have linear regular edges?

• The proposed method (densest k-subhypergraph ):

- 82 -

[1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on 
hypergraphs." arXiv preprint arXiv:1809.02589 (2018).



HyperGCN: Model Details
• 1-HyperGCN:

• Ideas: 
• Node representations within one hyperedge should be close 
σ𝑒∈𝐸max

𝑖,𝑗∈𝑒
||𝐡𝑖 − 𝐡𝑗||2

2 should be small regularizer?

• Select one representative edge for each hyperedge 

• Step 1: Find the hypergraph Laplacian with max node difference

• Step 2: Apply GCN on the reduced regular graph 
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At each epoch: 

[1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on 
hypergraphs." arXiv preprint arXiv:1809.02589 (2018).



HyperGCN: Model Details (cont’d)

• HyperGCN: enhanced 1-HyperGCN with mediators:
• 1 edge might be insufficient to represent the whole hyperedge

• Generalized hypergraph Laplacian: the rest of nodes as “mediators“

• Number of edges: 2|𝑒| − 3

• FastHyperGCN:
• Apply the enhanced 1-HyperGCN with initial features

• Use fixed transformed hyperedge in every epoch
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Comparison of 
two methods:

[1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on 
hypergraphs." arXiv preprint arXiv:1809.02589 (2018).



HyperGCN: Experiments 

• Results of SSL experiments 
• Mean test error ± standard deviation (lower is better) 
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[1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on 
hypergraphs." arXiv preprint arXiv:1809.02589 (2018).

c

Uses the clique expansion to 
approximate the hypergraph

The graph of HGNN and all methods of this work: 
normalized clique expansion when maximum size 
of a hyperedge is 3



HyperGCN: Experiments 

• HyperGCN for combinatorial optimization
• Results on the densest k-subhypergraph problem:

• Given a hypergraph (V, E), to find a subset W ⊆ V of k nodes 
so as to maximize the number of hyperedges contained in V

• Density (higher is better) of the set of vertices: obtained by 
each of the proposed approaches for k = 3|V|/4 
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[1] Yadati, Naganand, et al. "HyperGCN: A new method of training graph convolutional networks on 
hypergraphs." arXiv preprint arXiv:1809.02589 (2018).

c
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Multi-network Mining Algorithms
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Multi-network Association
• Basic problem definition:

• Given: 
• K networks {𝐺1, … , 𝐺𝐾}

• Observed multi-network associations 𝑖1, … , 𝑖𝐾 , … , 𝑖1 ∈ 𝐺1, … , 𝑖𝐾 ∈ 𝐺𝐾

• Output:
• The values of the rest of unobserved multi-network associations

• Problem variants:
• V1. K networks are heterogeneous (multi-relational associations)

• V2. Observed multi-network associations are pairwise

- 88 -

𝐺1

𝐺2

𝐺3

𝐺1

𝐺2

𝐺3

𝐺1

𝐺2

𝐺3

Observed

Unobserved

Basic V1 V2



TOP: Transductive Learning over 
Product Graph

• Problem setting:
• Transductive, cross-graph multi-relational learning (CGRL)

• Key ideas:
• Heterogeneous graph sources -> single homogeneous graph

• Via product graph

• Adv.: Simplify problem formulation

• Adopt a convex formulation and approximation of the CGRL
• Adv.: Ensure robust optimization and efficient computation

• Label propagation over the induced homogeneous graph
• Adv. 1: Enables transductive learning

• Adv. 2: Address label-sparsity by massively available non-observed tuples
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[1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International 
Conference on Machine Learning. PMLR, 2016.



TOP: Product Graph
• Task 1: cross-network multi-relation learning

• Given J graphs 𝐺(1), . . . , 𝐺(𝐽) with labeled multi-relations 𝑂 = 𝑖1, . . . , 𝑖𝐽
• Predict labels of the unlabeled multi-relations 

• Task 2: label prediction on product graph
• Given product graph P with labeled vertices 𝑂 = {(𝑖1, . . . , 𝑖𝐽)}

• Predict labels of its unlabeled vertices.
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Single homogeneous graph

Heterogeneous graphs

[1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International 
Conference on Machine Learning. PMLR, 2016.



TOP: Product Graph (cont’d)
• Spectral Graph Product (SGP) operator:

• Given 𝐺(1), … , 𝐺(𝐽)

• 𝒫(𝐺(1), … , 𝐺(𝐽)) is defined by the eigen system:

𝜅 𝜆𝑖1
1
, … , 𝜆𝑖2

𝐽
,⊗𝑗 𝑣𝑖𝑗

𝑗

𝑖1,…,𝑖𝐽

where 𝜅 is a pre-specified nonnegative nondecreasing function over 

𝜆𝑖1
1
, … , 𝜆𝑖2

𝐽
(eigenvalues for 𝐺(1), … , 𝐺(𝐽))

• E.g., 
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• Cartesian product graph 𝐺𝑐:
• an edge exist iff

• Tensor product graph 𝐺𝑡: 
• an edge exist iff

[1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International 
Conference on Machine Learning. PMLR, 2016.



• Objective function:

• Intuition:

TOP: Formulation
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Smoothness consistency 
on product graph

𝑂: training set
ത𝑂: complement of 𝑂 w.r.t. all 
possible multi-relations

[1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International 
Conference on Machine Learning. PMLR, 2016.

Complexity: 
𝑂((σ𝑗 𝑛𝑗)ς𝑗 𝑛𝑗)

Ranking 𝑙2-hinge loss



TOP: Approximation
• Include only the top-𝑑𝑗 eigenvectors in 𝑉(𝑗) for each graph 𝐺(𝑗)

• Tensor 𝑓 within the linear span of top ς𝑗=1
𝐽

𝑑𝑗 eigenvectors of 
the product graph
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Original objective function: Approximated objective function:

Tucker decomposition 
form

Complexity: 

𝑂 σ𝑗 𝑛𝑗 ς𝑗 𝑑𝑗

𝑑𝑗 ≪ 𝑛𝑗

[1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International 
Conference on Machine Learning. PMLR, 2016.



TOP: Experiments 
• Dataset: 

• Enzyme dataset for compound-protein interaction and the DBLP dataset of 
scientific publication record

• The heterogeneous types of objects (the circles) and the relational structures

• Performance of TOP with different SGPs:
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[1] Liu, Hanxiao, and Yiming Yang. "Cross-graph learning of multi-relational associations." International 
Conference on Machine Learning. PMLR, 2016.



TOP: Experiments 

• Performance of different methods on Enzyme
• Based on the quality of inferred target proteins given each compound

• Observation: Outperforms all baselines on all metrics
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GT-COPR: Graph-Regularized Tensor 
Completion from Observed Pairwise Relations

• Problem setting:
• Observed multi-network associations are pairwise

• Predict multi-network high-order multi-relational associations

• Limitation of existing work:
• Observed high-order multi-relational associations are sparse

• Do not utilize the observed pairwise multi-network associations
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[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical 

Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.

[2] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. 

Sayeeda et al., “Drugbank 5.0: a major update to the drugbank database for 2018,” Nucleic acids research, 2017

?



GT-COPR: Key Ideas

• Learn a compressed tensor in CPD-form*
• Adv.: Space and time efficiencies for learning high-order multi-relations.  

• Co-regularize tensor elements with the Laplacian of product graph
• Adv.: Introduce local consistencies among n-way relations

• Tensor collapsing for capturing the cross-mode dependencies 
• Adv.: Preserve global consistencies with the observed bipartite relations
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𝐀(𝟐)

[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical 
Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.

*CANDECOMP/PARAFAC decomposition 



GT-COPR: Formulation
• Objective function:
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• Tensor 𝒯 ∈ ℝ𝐼𝑛×𝐼𝑛−1×⋯×𝐼1 of 
inferred n-way relations is 
approximated by rank-K CPD 

form ෠𝒯 = 𝐴 𝑛 , 𝐴 𝑛−1 , … , 𝐴 1

• collapse( ෠𝒯, 𝑖, 𝑗): collapse ෠𝒯 into 
𝐼𝑖 × 𝐼𝑗 matrix by summing over 

the slides along corresponding 
modes

• Cartesian product graph 𝐺𝑐: an edge exist iff

• Tensor product graph 𝐺𝑡: an edge exist iff

• Strong product graph 𝐺𝑠: the edge exists iff
it is in either 𝐺𝑐 or 𝐺𝑡 𝐿: Laplacian of a product graph

[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical 
Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.



GT-COPR: Algorithm Overview 
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[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical 
Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.



GT-COPR: Algorithm Details
• Derivatives:

• Time complexity:

• Space complexity:
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|𝑊(𝑗)|: # of edges
𝐼𝑗: # of nodes

𝐾: # of ranks in 
approximation
|𝑅𝑗,𝑘|: # of pairwise 

relations

[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical 
Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.



GT-COPR: Experiments 
• Task: learning disease-gene-chemical relations

• Fiber-wise evaluation

• Slice-wise evaluation
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[1] Li, Zhuliu, et al. "Learning a Low-Rank Tensor of Pharmacogenomic Multi-relations from Biomedical 
Networks." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.



GT-COPR: Experiments 
• Prediction of significant cancer-specific pharmacogenomic interactions:

• GT-COPR generally has the best performance

• Similar observations can be found with tensor/strong PG
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Metric: AUROC
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SyTE: Sylvester Tensor Equation for 
Multi-Way Association
• Given: 

• A set of 𝐾 networks {𝐺𝑘 (𝑘 = 1,… ,𝐾)} (with node number 𝑛𝑘).

• A multi-way anchor association tensor 𝓑.

• Output: Multi-way association tensor 𝓧
• Entries of 𝓧 : the strength of multi-way association.

• Multi-way association: collective association of a node set.
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Inputs: Outputs:

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details:  Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper_Research_Track-
124.html)

https://virtual.2021.kdd.org/paper_Research_Track-124.html


SyTE: Intuition 
• Intuition: If multi-way association 𝓧(𝑖𝐾 , … , 𝑖1) is close to 𝓧(𝑗𝐾, … , 𝑗1):

• Two sets of nodes are strongly connected

• Nodes in each of the two sets share the same attribute respectively

• Nodes from node sets are connected by the same edge attribute

• Large 𝓧(𝑖3, 𝑖2, 𝑖1) and Large 𝓧 𝑗3, 𝑗2, 𝑗1 indicate:
• Large 𝐀1(𝑖1, 𝑗1), 𝐀𝟐 𝑖2, 𝑗2 and 𝐀𝟑(𝑖3, 𝑗3)

• {𝑖1, 𝑖2, 𝑖3}, {𝑗1, 𝑗2, 𝑗3}: same node attribute

• {𝑖1, 𝑗1}, {𝑖2, 𝑗2}, {𝑖3, 𝑗3}: same edge attribute
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[1] Si Zhang and Hanghang Tong. 2016. Final: Fast attributed network alignment. In Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining. ACM, 1345–1354.
[2] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2008. Global alignment of multiple protein interaction networks with application to 
functional orthology detection. Proceedings of the National Academy of Sciences 105, 35 (2008), 12763–12768
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SyTE: Formulation

• Objective function:

𝐽 𝓧 = ෍
𝑖1,…,𝑖𝐾
𝑗1,…,𝑗𝐾

[𝛽
𝓧 𝑖𝐾 , … , 𝑖1

𝑑(𝑖1, … , 𝑖𝐾)
−

𝓧 𝑗𝐾 , … , 𝑗1

𝑑(𝑗1, … , 𝑗𝐾)

2

∗

𝑡 𝐴1, … , 𝐴𝐾 ∗ 𝑓 𝑖𝑘 𝑓 𝑗𝑘 ∗ 𝑔 𝑖𝑘 , 𝑗𝑘 +

𝛾 𝓧 𝑖𝐾 , … , 𝑖1 − 𝓑 𝑖𝐾 , … , 𝑖1
2
]
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Normalized association 
smoothness preserver

Topology consistency

Node attribute consistency

Edge attribute consistency

Anchor association regularizer

• Details:
• 𝑡 𝐀1, … , 𝐀𝐾 = 𝐀1 𝑖1, 𝑗1 ⋯𝐀𝐾(𝑖𝐾 , 𝑗𝐾)

• 𝑓 𝑖𝑘 = 𝟙(𝐍1 𝑖1, 𝑖1 = ⋯ = 𝐍𝐾(𝑖𝐾 , 𝑖𝐾))

• 𝑔 𝑖𝑘 , 𝑗𝑘 = 𝟙(𝐄1 𝑖1, 𝑗1 = ⋯ = 𝐄𝐾(𝑖𝐾 , 𝑗𝐾))

• 𝑑 𝑖1, … , 𝑖𝐾 = σ𝑗1,…,𝑗𝐾
𝐀1 𝑖1, 𝑗1 ⋯𝐀𝐾(𝑖𝐾 , 𝑗𝐾)

• 𝛽, 𝛾: weighting parameters

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details:  Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper_Research_Track-
124.html)

https://virtual.2021.kdd.org/paper_Research_Track-124.html


SyTE: Sylvester Tensor Equation
• On plain networks:

𝓧− 𝛼𝓧 ×1
෩𝐀𝐾 ×2 ⋯×𝐾

෩𝐀1 − 1 − 𝛼 𝓑 = 𝟎

• where ෩𝐀𝑖 = 𝐃𝑖
−1/2

𝐀𝑖 𝐃𝑖
−1/2

. 

• Corresponding linear system:
• 𝐈 − ෩𝐀1 ⊗⋯⊗ ෩𝐀𝐾 𝐱 = 𝐛

• On attributed networks:

𝓧− 𝛼 ෍

𝑜,𝑝,𝑞

𝓧×1
෩𝐀𝐾

𝑜,𝑝,𝑞
×2 ⋯×𝐾

෩𝐀1
𝑜,𝑝,𝑞

− 1 − 𝛼 𝓑 = 𝟎

• where ෩𝐀𝑖
𝑜,𝑝,𝑞

= (𝐃
𝑖

−
1

2𝐍𝑖
𝑝
)(𝐄𝑖

𝑜 ⊙𝐀𝑖)(𝐃𝑖

−
1

2𝐍𝑖
𝑞
).

• 𝐍𝑖
𝑝
: diagonal node attribute matrix for attribute p

• 𝐄𝑖
𝑜: edge attribute matrix for attribute o

• Corresponding linear system:

• 𝐈 − σ𝑜,𝑝,𝑞
෩𝐀1

𝑜,𝑝,𝑞
⊗⋯⊗ ෩𝐀𝐾

𝑜,𝑝,𝑞
𝐱 = 𝐛
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Normalization 

𝐱 = vec 𝓧 , 𝐛 = vec(𝓑)

[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details:  Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper_Research_Track-
124.html)

https://virtual.2021.kdd.org/paper_Research_Track-124.html


SyTE: Key Ideas on Plain Networks
• Decompose the equation into a series of subsystems

• Utilize the sparsity of 𝓑 for decomposition

• Each subsystem is relatively easier to solve

• Subsystem by a Tensorized Krylov subspace method
• Tensorized Krylov subspace vs. traditional Krylov subspace: 𝑂(𝑚𝐾 )→𝑂(𝑠𝐾𝑙𝑚)

• Solve each subsystem by generalized minimal residual method
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[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details:  Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper_Research_Track-
124.html)

https://virtual.2021.kdd.org/paper_Research_Track-124.html


SyTE: Key Ideas on Attributed Networks
• Decompose the equation by node attributes

• The solution tensor has a block-diagonal structure

• Diagonal tensors by block coordinate descent (BCD)
• For diagonal block variables

• Adopt approximation in BCD for faster computation
• Faster computation
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[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details:  Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper_Research_Track-
124.html)

https://virtual.2021.kdd.org/paper_Research_Track-124.html


SyTE: Experiments 
• Multi-network alignment:

• High-order metric: successful alignment if all nodes from input 
networks are aligned correctly.

• Pairwise metric: successful alignment if any pair of nodes from input 
networks are aligned correctly.
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[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details:  Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper_Research_Track-
124.html)

https://virtual.2021.kdd.org/paper_Research_Track-124.html


SyTE: Experiments 

• Scalability:

• SyTE-Fast-P/A exhibits a linear scalability w.r.t. the # of nodes of 
the input networks
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[1] Du, Boxin, Lihui Liu, and Hanghang Tong. “Sylvester Tensor Equation for Multi-way Association”. SIGKDD (2021)
[2] More details:  Session Time: 16-Aug 01:00PM-02:30PM SGT (https://virtual.2021.kdd.org/paper_Research_Track-
124.html)

https://virtual.2021.kdd.org/paper_Research_Track-124.html


Overview of Part II

- 113 -

Multi-network Mining Algorithms
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Cross-Layer Dependency Inference

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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• Obs. 1: Cross-layer dependencies in multi-layered 
networks are often incomplete

• Q1: How to infer the hidden cross-layer dependencies?



Problem Definition

• Given: a multi-layered network
• Layer-layer dependency matrix 𝑮

• Within-layer connectivity matrices 𝒜 = 𝑨1, ⋯ , 𝑨𝑔
• Observed cross-layer dependency matrices 𝒟 = 𝑫𝑖𝑗

• Find: true cross-layer dependency matrices ෩𝑫𝑖𝑗
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• 𝑨1 for chemical network, etc.
• 𝑮 1,2 = 1, 𝑮 1,3 = 0;
• 𝑫12 are represented by solid arrows 

between 𝒢1 and 𝒢2

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.



Fast Cross-Layer Association Inference
(FASCINATE): Formulation 

• Key idea: as a collective collaborative filtering problem
• Within-layer networks as user-user network, item-item similarity 

network, etc.

• Cross-layer dependency as user-item ratings

• Optimization problem:

min𝐹𝑖≥0(𝑖=1,…,𝑔) 𝐽 = ෍

𝑖,𝑗:𝐺 𝑖,𝑗 =1

∥ 𝐖𝑖,𝑗⨀(𝐃𝑖,𝑗 − 𝐅𝑖𝐅𝑗′) ∥𝐹
2 +

𝛼෍

𝑖

𝑡𝑟(𝐅𝑖′(𝐓𝑖 − 𝐀𝑖)𝐅𝑖) + 𝛽෍

𝑖

∥ 𝐅𝑖 ∥𝐹
2
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[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.

Matching observed cross-layer dependencies

Node homophily Regularization



FASCINATE: Optimization Algorithm

• Block coordinate descent method

• For each 𝑭𝑖, use multiplicative update method

where
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[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.



FASCINATE: Experimental Setups

• Datasets:

• Abstract dependency structure
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[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.



FASCINATE: Experimental Results
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• Effectiveness of dependency inference on BIO dataset

• Fascinate outperforms all baselines

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.



FASCINATE – Experimental Results

• Effectiveness of dependency inference on INFRA-5

• Fascinate outperforms all baselines

120

[1] Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Multi-network Mining Algorithms

- 121 -

Ranking Classification Clustering 
Hyperlink 
prediction

Multi-
network 

association

Multi-
network 

embedding

• Consistency 
based 
homogeneous

• Consistency 
based 
heterogeneous

• Label 
propagation-
based multi-
view/domain 
classification

• GNN-based 
embedding

• Contrastive 
learning for 
multi-view 

• NMF-based 
method

• Autoencoder
-based 
embedding

• GNN-based 
embedding

• Label 
propagation-
based method

• w/o attribute
• w/ attribute
• Dependency 

inference
• Network

alignment

• Multi-view
network
clustering 

• NoN
clustering 

• MF-based 
embedding

• Random 
walk-based 
embedding

• GNN-based 
embedding



• Given: 
• a set of networks 𝐺𝑙 𝑙 ≥ 2 where 𝐺𝑙 = 𝑉𝑙 , 𝐸𝑙 , 𝐀𝑙 ; 

• 𝑉𝑙 , 𝐸𝑙 , 𝐀𝑙 are the nodes, edges and adjacency matrix of 𝐺𝑙;  

• prior alignment matrices {𝑯𝑙1,𝑙2} between 𝐺𝑙1 and 𝐺𝑙2.

• Find: the alignment matrices 𝑺𝑙1,𝑙2 between 𝐺𝑙1 and 𝐺𝑙2 .

Network Alignment: Problem Definition

1

2

4

5

3

𝐺1

1’

3’ 2’

5’

4’

𝐺2
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[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th 
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY, 
USA.



Why Do We Care?
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[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th 
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY, 
USA.



Key Challenge #1: Complexity

• Time complexity:
• Most of existing works have an at least 𝑂 𝑛2 time complexity

• Inefficient computations for large-scale networks

• Space complexity:
• At least 𝑂 𝑛2 to store the alignment matrix

• Costly memory consumptions

• Q: How to efficiently solve network alignment?
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[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th 
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY, 
USA.



Key Challenge #2: Variety

• Networks have rich contextual information
• Node attributes, e.g., gender, age, etc.

• Edge attributes, e.g., relation types, etc.

• Q: How to encode contextual information to enhance 
the alignment performance?
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[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th 
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY, 
USA.



Key Challenge #3: Disparity

• Networks appear in various sources
• Networks may capture distinct information 

• Facebook: to connect friend, family, etc. 

• LinkedIn: to connect professionals

• Same nodes have different behavior patterns

• E.g., a user is very active in Facebook but quiet in Twitter

• Q: How to handle the disparity behind multi-sourced 
networks?
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[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th 
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY, 
USA.



Overview of Network Alignment Methods

Collective NA Higher-Order NA Related Tasks

Recent Network Alignment 
(NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation

127

[1] Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 29th 
ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY, 
USA.



Coffee Break Time
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We will resume the tutorial 15 minutes later.
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Multi-network Mining Algorithms
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Ranking on Single Network: Intuition

• Assumption: Homophily (guilt-by-association)

• Example: Two researchers are close if they
• Share many common co-authors

• Work on similar topics

• Publish at same venue(s).
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[1] H. Tong, C. Faloutsos, J.-Y. Pan: Fast Random Walk with Restart and Its Applications. ICDM 2006
[2] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks."Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.
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Ranking on Single Network: Formulation

• Nearby nodes, higher scores

• 𝑟𝑖 = 𝑐𝐀𝑟𝑖 + 1 − 𝑐 𝑒𝑖
• 𝑒𝑖 is one hot vector
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[1] H. Tong, C. Faloutsos, J.-Y. Pan: Fast Random Walk with Restart and Its Applications. ICDM 2006
[2] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.
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CrossRank: Motivation
• A1: Given a disease (e.g., 𝑃1), what are the most

relevant proteins (blue nodes)?

• A2: Who is most influential considering both the
within and cross-area influence?
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Tissue-Specific PPI Networks Collaboration Networks

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks."Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.



CrossRank: Problem Definition
• Given:

• A NoN

• the query vectors 𝐞𝑖 (i = 1, …, g)

• Example: 𝐞1 = 0, 1, 0, 0, 1

• 𝐞1 refers to Mat and Joe in 𝐀𝟏

• Find:
• ranking vectors 𝐫𝑖 for the nodes in 𝐀𝑖
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𝐀𝟏 𝐀𝟐

𝐀5

𝐀𝟑

𝐀4

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.



CrossRank: Intuition
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• Within-network smoothness
• Similar rankings for close nodes
• Example: PageRank

• Query preference
• High scores for the queried nodes

• Cross-network consistency
• Similar ranking scores for an overlapped domain node if the

domains this node belongs to are similar with each other.
• Example: If

• a protein is highly relevant to disease-i.
• disease-i is very similar to disease-j.
• then it is likely that the same protein is also highly relevant to

disease-j.
[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.



CrossRank: Formulation
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• 𝐫𝑖 is the ranking vector of the domain-specific network 𝐀𝑖 .
• 𝑑𝑚(𝑖) is the degree of main node 𝑖 in the main network 𝐆.
• 𝐼𝑖𝑗 is the set of common nodes between 𝐀𝑖 and 𝐀𝑗.

• 𝑮(𝑖, 𝑗) is the similarity between 𝐀𝑖 and 𝐀𝑗 .
Similar ranking scores for
an overlapped domain
node if the two domains it
belongs to are similar.

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.



CrossRank: Optimization
• Matrix of objective function:
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𝐗 is also the
Laplacian matrix
of 𝐘.

RWR-like update rule

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.



CrossQuery: Problem Definition
• Given:

• a NoN

• a query node from a source domain-specific network 𝐀s

• a target domain-specific network 𝐀d

• an integer k

• Find:
• the top-k most relevant nodes from 𝐀d
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[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.



CrossQuery: Method
• CrossQuery-Basic:

• Restricting the candidate nodes in the target domain-
specific network.

• CrossQuery-Fast:
• Prune less relevant main nodes in the main network.
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[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.



CrossQuery: Experimental Results
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• Collaboration Prediction on DBLP NoN

• Observation: CrossQuery is effective and fast for DBLP NoN.

[1] Ni, Jingchao, et al. "Inside the atoms: ranking on a network of networks." Proceedings of the 20th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 2014.
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Multi-network Mining Algorithms
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Network of Heterogeneous
Information Networks (NeoHIN): Intuition

• Strong representation power of HIN

• Domain-specific and cross-domain ranking in NoN

• Enjoy the best of both kinds of models

- 141 -

[1] Slides credit to Zhe Xu.
[2] Z. Xu, S. Zhang, Y. Xia, L. Xiong and H. Tong, "Ranking on Network of Heterogeneous Information Networks," 2020 IEEE International 
Conference on Big Data (Big Data), 2020, pp. 848-857, doi: 10.1109/BigData50022.2020.9378121.

NoN: area network of co-author networks Scholar HIN



NeoHIN: Problem Definition
• Given:

• A network of heterogeneous network (NeoHIN).

• A set of target nodes for ranking.

• A set of query nodes of interests (optional).

• A set of meta-path of interests (optional). 

• Find: the rankings among target nodes w.r.t. query node(s) 
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[1] Z. Xu, S. Zhang, Y. Xia, L. Xiong and H. Tong, "Ranking on Network of Heterogeneous Information Networks," 2020 IEEE International 
Conference on Big Data (Big Data), 2020, pp. 848-857, doi: 10.1109/BigData50022.2020.9378121.

query node example 1

query nodes example 2

target nodes



HITS-NeoHIN: Formulation
• Integrate the cross-domain consistency into HITS.

• HITS-NeoHIN:
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Objective of Hits from the 𝑖-th domain Query preference

min 𝐽𝑖 𝐮𝑖 , 𝐯𝑖 =
𝑐

2
||𝐀𝑖 − 𝐮𝑖𝐯𝑖

′ ||𝐹
2 + (1 − 𝑐)(||𝐮𝑖 − 𝐞𝑢𝑖 ||𝐹

2 + 𝐯𝑖 − 𝐞𝑣𝑖 |𝐹
2 ,

𝑠. 𝑡. ∀𝑥, 𝐮𝑖(x) ≥ 0, 𝐯𝑖(x) ≥ 0

min 𝐽 𝐮, 𝐯 =෍

𝑖=1

𝑔

𝐽𝑖 𝐮𝑖 , 𝐯𝑖 +

𝑎෍

𝑖=1

𝑔

෍

𝑖=1

𝑔

||
𝐮𝑖 𝐼𝑖𝑗

𝐝 𝑖
−
𝐮𝑗 𝐼𝑖𝑗

𝐝 𝑗
||2
2𝐆(𝑖, 𝑗) + 𝑎෍

𝑖=1

𝑔

෍

𝑖=1

𝑔

||
𝐯𝑖 𝐼𝑖𝑗

𝐝 𝑖
−
𝐯𝑗 𝐼𝑖𝑗

𝐝 𝑗
||2
2𝐆(𝑖, 𝑗) ,

Cross-domain consistency

[1] Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5), 604-632.

For two similar domains 𝒊, 𝒋, 
similar ranking scores for an
overlapped node if the two
domains it belongs to are similar



PreP-NeoHIN: Formulation
• Integrate PreP algorithm into NeoHIN

• PreP:

• PreP-NeoHIN:
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min 𝐿𝑂,𝑖 𝜂𝑖 , 𝜌𝑖 , 𝜙𝑖 , 𝜃𝑖
= −log(𝑝 𝑝𝑐𝑖 , 𝜂𝑖 , 𝜌𝑖 , 𝜙𝑖 , 𝜃𝑖 𝛼𝑖 , 𝛽𝑖 )

Objective of PreP from
the 𝑖-th domain

Contribution of meta-paths

min 𝐿 =෍

𝑖=1

𝑔

𝐿𝑂,𝑖 𝜂𝑖 , 𝜌𝑖 , 𝜙𝑖 , 𝜃𝑖 + 𝛾෍

𝑖=1

𝑔

෍

𝑗=1

𝑔

෍

𝑡=1

|𝑇|

(
𝜂𝑖𝑡

𝐝 𝑖
−

𝜂𝑗𝑡

𝐝 𝑗
)2𝐆(𝑖, 𝑗) ,

Objective of PreP from every domain Cross-domain consistency

[1] Shi, Y., Chan, P. W., Zhuang, H., Gui, H., & Han, J.. Prep: Path-based relevance from a probabilistic perspective in 

heterogeneous information networks. KDD 2017.

For two similar domains 𝒊, 𝒋, the 
importance of a meta path 𝒕 in 
these two domains (𝜼𝒊𝒕, 𝜼𝒋𝒕) 

should be similar.

𝑡1

𝑡2



NeoHIN: Experimental Results
• Two synthetic networks with 2,000 nodes

• Cross-domain link prediction on synthetic dataset

• Metapath-based link prediction
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Observation: NeoHIN has achieved the best performance.
[1] Z. Xu, S. Zhang, Y. Xia, L. Xiong and H. Tong, "Ranking on Network of Heterogeneous Information Networks," 2020 IEEE International 
Conference on Big Data (Big Data), 2020, pp. 848-857, doi: 10.1109/BigData50022.2020.9378121.



NeoHIN: Experimental Results
• Five domain networks from AMiner

• Cross-domain link prediction

• Metapath-based link prediction
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[1] Z. Xu, S. Zhang, Y. Xia, L. Xiong and H. Tong, "Ranking on Network of Heterogeneous Information Networks," 2020 IEEE International 
Conference on Big Data (Big Data), 2020, pp. 848-857, doi: 10.1109/BigData50022.2020.9378121.
[2] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: extraction and mining of academic social networks,” in Proceedings of 
the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2008, pp. 990–998. 
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Multi-network Mining Algorithms

- 147 -

Ranking Classification Clustering 
Hyperlink 
prediction

Multi-
network 

association

Multi-
network 

embedding

• Consistency 
based 
homogeneous

• Consistency 
based 
heterogeneous

• Label 
propagation-
based multi-
view/domain 
classification

• GNN-based 
embedding

• Contrastive 
learning for 
multi-view 

• NMF-based 
method

• Autoencoder
-based 
embedding

• GNN-based 
embedding

• Label 
propagation-
based method

• w/o attribute
• w/ attribute
• Dependency 

inference
• Network

alignment

• Multi-view
network
clustering 

• NoN
clustering 

• MF-based 
embedding

• Random 
walk-based 
embedding

• GNN-based 
embedding



Single Network Clustering: Motivations

• Detect sub-networks that satisfy certain properties

• Many connections within clusters

• Few connections across clusters
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[1] Credit to 592-ST-NSB-Clustering.pdf
[2] Jingchao Ni, Hanghang Tong, Wei Fan, and Xiang Zhang. 2015. Flexible and Robust Multi-Network Clustering. Proceedings of the 21th 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 
[3] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks. Physical review
E 69.2 (2004): 026113. 

Protein complexes in a PPI network A novel character interaction network



Multi-Network Clustering: Motivations

• Networks are often collected from multiple sources.

• Single network is noisy and provides partial knowledge.

• Multi-network can provide complementary information.
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An example of multi-network

[1] Kivelä, Mikko, et al. "Multilayer networks." Journal of complex networks 2.3 (2014): 203-271.



Co-regularized Multi-view
Spectral Clustering (CMSC): Single View

• let X = {x1
𝑣

, x2
𝑣

, … , x𝑛
𝑣
} denote the examples in

view 𝑣 and K𝑣 denote the similarity matrix.

• The single view spectral clustering is:

• where 𝐋(𝑣) is the normalized graph Laplacian.
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[1] Figure credit to https://developer.nvidia.com/discover/cluster-analysis
[2]Abhishek Kumar, Piyush Rai, and Hal Daumé. 2011. Co-regularized multi-view spectral clustering. In Proceedings of the 24th 
International Conference on Neural Information Processing Systems (NIPS'11). Curran Associates Inc., Red Hook, NY, USA, 1413–1421.



CMSC-Pairwise: Intuitions

• Different views provide compatible information.

• Regularize the disagreement between views 𝑣 and 𝑤.

• Two-view case:

• Reformulation:
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CMSC-Pairwise: Formulation

• Multi-view case:
• The objective function:

• Transformed Laplacian form:

- 152 -

Within-layer spectral clustering Cross-layer pairwise regularization



CMSC-Centroid: Formulation

• Key idea: Set an underlying centroid matrix 𝐔∗

• Solving for the 𝐔∗ requires:

- 153 -

Centroid matrix regularization



CMSC: Experimental Results
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• Two synthetic datasets and three real datasets
• Clustering on five datasets with NMI metric

• (1), (2), (3) indicate the number of views used.
• Letters (P) and (C) indicate pairwise and centroid

based methods.



Overview of Part II

- 155 -

Multi-network Mining Algorithms
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NoN Clustering (NoNClus): Intuitions

• Different networks have different meanings for clusters.

• Domain similarity is important for the clustering task.

- 156 -

[1]Slides credit to https://nijingchao.github.io/slide/kdd15_nonclus_slides.pdf
[2]Jingchao Ni, Hanghang Tong, Wei Fan, and Xiang Zhang. 2015. Flexible and Robust Multi-Network Clustering. Proceedings of the 21th 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, 
USA, 835–844. DOI:https://doi.org/10.1145/2783258.2783262

Example:
Dependent on the
meaning of domain
network E, the
cluster in E can
represent Gene or
research community.



NoNClus: Formulation
• Phase 1: main network clustering.

• Symmetric Non-negative Matrix Factorization (SNMF).

• Minimizing

- 157 -

An example of NoN of research papers, domain network represents venue.

Cluster
the main
venue
network.



NoNClus: Formulation (cont.)
• Phase 2: domain specific network clustering (Simplified).

• Domain-specific networks in the same cluster have same
underlying clustering structure.

• All domains have 𝑛 nodes and 𝑡 clusters.

• Let the domain cluster assignment vector for node 𝑥 in 𝐀(𝑖)

be 𝑢𝑥∗
𝑖 (i=1, …, g).

• Define 𝑘 hidden domain cluster assignment vectors

𝑣𝑥∗
𝑗

(j=1, …, k)
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NoNClus: Formulation (cont.)
• Phase 2: domain specific network clustering (General)

• Different domains can have different sets of nodes.

• Different domains can have different number of clusters.

• Indirect regularization

• Minimize

- 159 -

Example: since D, E, F are in the same cluster, if
nodes 1 and 2 have similar cluster assignments
in D, their cluster assignments in E and F
should also be similar.

Regularized vectorNodes in same domain networks



NoNClus: Experimental Results
• Clustering accuracy on two synthetic datasets

• In view dataset, all 𝐀(𝑖) have the same size.

• In dom dataset, different 𝐀(𝑖) have different sizes.

• Observation: dom dataset is difficult than view dataset.
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Overview of Part II
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Multi-network Mining Algorithms
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• NoN
clustering 
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Embedding on Single Network:
Motivation

• Represent each node with a vector

• Applications:
• Node classification

• Link prediction

• Node visualization
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[1] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning of social representations. In Proceedings of the 20th ACM 
SIGKDD international conference on Knowledge discovery and data mining.
[2] Tang, Jian, et al. "Line: Large-scale information network embedding." Proceedings of the 24th international conference on world wide web. 
2015.
[3] Tang, Jian, et al. "Visualizing large-scale and high-dimensional data." Proceedings of the 25th international conference on world wide web. 
2016.

Node clustering

Link prediction

Visualization of network embedding.



Multi-layered Network Embedding:
Motivations

• Current works focus on single network embedding.

• Networks are complicated with cross-domain interactions.
• Examples: critical infrastructure systems and organization-level

collaboration platform.

- 163 -

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).



Multi-layered Network Embedding
(MANE) : Problem Definition
• Given:

• The embedding dimension 𝑑1, 𝑑2, … , 𝑑𝑔 for different layers;

• A set of 𝑔 within-layer adjacency matrices A = {𝐀1, … , 𝐀𝑔};

• Observed cross-layer dependency matrix D = {𝐃𝑖,𝑗 , (𝑖, 𝑗 =
1,… , 𝑔)(𝑖 ≠ 𝑗)} where 𝐃𝑖,𝑗 ∈ 0,1 𝑛𝑖×𝑛𝑗 denotes the cross-
layer network dependency between 𝐀𝑖 and 𝐀𝑗;

• Output: the embedding representation 𝐅𝑖 ∈ 𝑅𝑛𝑖×𝑑𝑖

- 164 -

Input:
Team Network: 𝐀1
Member Dependency: 𝐃2,1

Social Network: 𝐀2

Expertise Dependency: 𝐃3,2

Information Network: 𝐀3

Output:
Team Network: 𝐅1
Social Network: 𝐅2
Information Network: 𝐅3

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).



Multi-layered Network Embedding
(MANE): Intuition

• Symmetric non-negative matrix factorization (SNMF).

• Collaborative filtering for bipartite graph.

• Key idea:
• MF for cross-layer edge

• Smoothness regularization for within-layer edge
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[1] Figure credit to https://www.advancinganalytics.co.uk/blog/2020/5/13/recommendation-systems.
[2] Kuang, Da, Chris Ding, and Haesun Park. "Symmetric nonnegative matrix factorization for graph clustering." Proceedings of the 2012 
SIAM international conference on data mining. Society for Industrial and Applied Mathematics, 2012.

SNMF for single network Collaborative filtering

https://www.advancinganalytics.co.uk/blog/2020/5/13/recommendation-systems


MANE: Within-layer Connection
• Smoothness requirement:

• Reformulation:

• Objective function for all layers:
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Laplacian matrix for the 𝑘-
th layer network

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).



MANE: Cross-Layer Dependency
• Interaction requirement:

𝐊𝑖𝑗 is the interaction matrix.

• Objective function:

- 167 -

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).



• Node classification on AMiner datasets (3 layers)

• Metrics: Macro-F1 and Micro-F1

• Observation: MANE is better than single network
embedding methods.

MANE: Experimental Result

- 168 -

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).



MANE: Parameter Study
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• Performance w.r.t. the cross-domain parameter 𝛼

• Performance w.r.t. to embedding dimensionality

• Observations:
• Integrate the cross-layer part boosts the performance.

• Large dimension captures more information.

[1] Li, Jundong, C. Chen, Hanghang Tong and H. Liu. “Multi-Layered Network Embedding.” SDM (2018).



Overview of Part II
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Multi-network Mining Algorithms
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Multiplex Network Embedding (MNE):
Intuitions

• DeepWalk shows advantages in single network embedding

• Leverage common nodes across layers for regularization
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[1] Zhang, Hongming, et al. "Scalable Multiplex Network Embedding." IJCAI. Vol. 18. 2018.
[2] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning of social representations. In Proceedings of the 20th 
ACM SIGKDD international conference on Knowledge discovery and data mining.

A B C

B

C
B

𝒢1
𝒢2

𝒢3

C
D

D
A E

(1) Nodes in single network have
unique connectivity;
(2) Nodes in multiplex network
demonstrates different
connectivities across layers.



MNE: Problem Definition
• Given:

• 𝐺𝑖 = 𝑁𝑖 , 𝐸𝑖 ,where 𝑁𝑖 is the node set and 𝐸𝑖 is the edge set.

• Find:
• 𝐛n ∈ 𝑅𝑑, the common-shared embedding for node 𝑛

• 𝐮n
𝑖 ∈ 𝑅𝑠, the specific embedding for 𝑛 in the 𝑖-th network

• A transformation matrix 𝐗𝑖 ∈ 𝑅𝑠×𝑑

• Final embedding

- 172 -

[1] Zhang, Hongming, et al. "Scalable Multiplex Network Embedding." IJCAI. Vol. 18. 2018.
[2] Figure credit to Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings of the 
29th ACM International Conference on Information & Knowledge Management.

𝑃1 appears in two layers while
𝑃2 appears in three layers.



MNE: Algorithm
• Skipgram:

• Probability:

where 𝐯𝒏
′ represents the parameters of context vectors

shared by all relation types.

• Word2vec: use negative sampling

- 173 -

Negative sampling set

[1] Zhang, Hongming, et al. "Scalable Multiplex Network Embedding." IJCAI. Vol. 18. 2018.
[2] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).



MNE: Experimental Results
• Link prediction for six datasets with AUC metric

• Observation: MNE has a 2%-3% advantage over other
baselines.

- 174 -



MNE: Experimental Results (cont.)
• Node classification and scalability

• Observation: MNE performs well and has a linear
memory usage.

- 175 -

Node classification performance. Scalability.



Overview of Part II
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Multi-network Mining Algorithms
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Deep Multiplex Graph Infomax
(DMGI): Problem Definition

• Given:
• 𝐺𝑟 = 𝑁, 𝐸𝑟 , 𝐗 , 𝑟 = 1,… ,𝑀

• 𝑁: node set, 𝐗: the attribute matrix.

• 𝐸𝑟: edge set for the relation 𝑟

• Find: node embedding for each node 𝐳𝑖 ∈ 𝐙 ∈ 𝑅𝑛×𝑑.
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[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial 
Intelligence. Vol. 34. No. 04. 2020. 

social network 1 social network 2
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DMGI: Intuition

• Graph Convolutional Network (GCN) for attributed network

• Deep Graph Infomax (DGI) for modeling global properties of graph

• Combine GCN and DGI for attributed multi-network embedding
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[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial 
Intelligence. Vol. 34. No. 04. 2020. 
[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint 
arXiv:1609.02907 (2016).
[3] Veličković, Petar, et al. "Deep graph infomax." arXiv preprint arXiv:1809.10341 (2018).

𝐡𝒊: node embedding, 𝐬: graph embedding and ሚ𝐡𝑗: negative node embedding.

GCN DGI



DMGI: Framework
• Single layer level embedding:

• GCN:

• Global structure embedding:

• Relation-type specific node embedding:

• Score function:

- 179 -

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial 
Intelligence. Vol. 34. No. 04. 2020. 



DMGI: Framework (cont.)
• Joint modeling and consensus regularization:

• Consensus embedding Z:

• Unsupervised loss:

- 180 -

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial 
Intelligence. Vol. 34. No. 04. 2020. 



DMGI: Framework (cont.)
• Joint modeling and consensus regularization:

• Attention mechanism:

where 𝐪(𝑟) is the feature vector of relation 𝑟.

• Semi-supervised learning:
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[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial 
Intelligence. Vol. 34. No. 04. 2020. 



• Node clustering and similarity search

• Metrics: NMI for clustering and Sim@5 for similarity
search

• Observations:

• DMGI outperforms all baselines;

• the attention mechanism is useful.

DMGI: Experimental Results
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[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial 
Intelligence. Vol. 34. No. 04. 2020. 



• Node classification on four real world datasets.

• Metrics: Macro-F1 and Micro-F1

• DMGI improves classification performance.

DMGI: Experimental Results (cont.)

- 183 -

Node classification

[1]Park, Chanyoung, et al. "Unsupervised attributed multiplex network embedding." Proceedings of the AAAI Conference on Artificial 
Intelligence. Vol. 34. No. 04. 2020. 



Roadmap
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Part III: Multi-network Future Directions



Overview of Part III

Future Directions

Novel Multi-
network Models

Advanced Mining 
Algorithms

Diverse Multi-
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Novel Multi-network Models
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Temporal Multi-network Models 
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Temporal multi-view networks: Temporal hypergraphs:

Temporal inter-dependent networks: Temporal NoNs:

[1] Zhang, Zhenghao, Jianbin Huang, and Qinglin Tan. "Multi-view Dynamic Heterogeneous Information Network 
Embedding." arXiv preprint arXiv:2011.06346 (2020).
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Multi-view Knowledge Graph
• Definition: 𝒢𝑖 = 𝒱𝑖 , ℰ𝑖 , 𝑖 = 1,… , 𝐾

• Optional: features 𝐹𝑖
• 𝒱𝑖: entity set of the i-th view

• ℰ𝑖: (head, relation, tail) triple set of the i-th view

• E.g., 

Mona Lisa
Leonardo 
da Vinci

Louvre Italy

author

museum birth place

Mona Lisa
Leonardo 
da Vinci

Louvre Italy

portfolio

exhibit birth place

Other title: La 
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author

museum birth place

Mona Lisa

Leonardo da 
Vinci

Caption: the 
Richelieu Wing

Population: 
60.36M

Year: 1503

Birth name: 
Leonardo di ser 
Piero da Vinci

Louvre Italy

author

museum birth place

Mona Lisa

Leonardo da 
Vinci

Established: 
1793

Continent: 
Europe

View 1

View 2

View 1

View 2
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[1] Zhang, Qingheng, et al. "Multi-view knowledge graph embedding for entity alignment." arXiv preprint 
arXiv:1906.02390 (2019).



High-arity Knowledge Graph

• Motivations: 
• Existing knowledge graph: 2-arity
• E.g., author(Leonardo da Vinci, Mona Lisa)
• High-arity knowledge graph: higher-arity (high-order relation)
• E.g., studied(Hawking, PhD, Princeton)

• Future directions:
• How to construct high-arity knowledge graph?
• How to mine on high-arity knowledge graph?
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Similar to 
hypergraph
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Combination of Traditional Multi-
network Models

• Network of X:
• X: regular networks (covered), hypergraphs, multi-view 

networks, etc.

• Multi-layered hypergraph: 
• Generalization of multi-layered graph
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G
H

L
I

Dependence 

Hyperedge  
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Generalized Network of Networks

• G1: Multi-layered Hierarchical NoN

• G2: Soft Mapping Function 𝜃
• 1-to-many or many-to-many

• G3: Map Edges to Networks 𝜑

▪ G: Main Network
▪ A: Domain Networks
▪ D: Cross-Layer Dep’
▪ 𝜃: Function VG → A
▪ 𝜑: Function EG→ D

[1] C. Chen, J. He, N. Bliss and H. Tong: “On the Connectivity of Multi-layered Networks: Models, Measures and Optimal Control”

ICDM 2015.

[2] C. Chen, J. He, N. Bliss and H. Tong: “Towards Optimal Connectivity on Multi-layered Networks”. IEEE Trans. Knowl. Data Eng.,

29(10): 2332-2346 (2017)
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Attributed Multi-layered Network
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• Shapes: node types; colors: attributes

Attributed multi-view networks: Attributed hypergraphs:

Attributed inter-dependent networks: Attributed NoNs:
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Advanced Mining Algorithms
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Active Multi-network Alignment/Association

• Motivation: human interaction with multi-network models
• Find the most informative node (set) for groundtruth query

• Maximize alignment/association accuracy on the rest of nodes

• Challenges: 
• How to define and quantify node (set) information for query?

• How to identify informative node (set)?

• Future directions:
• Matching distribution-based certainty measurement

• Network derivative/influence function-based measurement

[1] Malmi, Eric, Aristides Gionis, and Evimaria Terzi. "Active network alignment: a matching-based 

approach." Proceedings of the 2017 ACM on Conference on Information and Knowledge Management . 2017.
[2] Qinghai Zhou , Liangyue Li , Xintao Wu, Nan Cao, Lei Ying, Hanghang Tong. “Attent: Active Attributed Network Alignment.” 
In Proceedings of the Web Conference 2021 (WWW ’21) 
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Active Multi-network Embedding

• Motivation:
• Select nodes for query to optimize the embedding model 

• Challenges:
• How to select the most informative nodes for specific tasks?

• How to handle multi-network structure (attributes)?

• Future directions:
• Combine active learning with multi-network GNN methods

• Multi-armed bandit for active node selection strategies 

- 195 -

[1] Madhawa, Kaushalya, and Tsuyoshi Murata. "Active Learning for Node Classification: An 

Evaluation." Entropy 22.10 (2020): 1164.
[2] Madhawa, Kaushalya, and Tsuyoshi Murata. "A multi-armed bandit approach for exploring partially observed 
networks." Applied Network Science 4.1 (2019): 1-18.



Adversarial Multi-network Alignment/Association

• Motivations:
• Existing adversarial attacks on network alignment are based on 

derivative-based importance score

• But no work exits on adversarial defense

• Challenge:
• Compared to adversarial attack/defense in single network, multiple 

networks may further complicate the defense process.

• Future direction: 
• Adversarial training for multi-network alignment/association (w/ GNN)
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Adversarial Multi-network Embedding

• Motivations:
• Improve the robustness of embedding on multi-networks

• Generalized adversarial network embedding to multi-networks

• Challenges:
• Multi-network structure complicates the embedding generation 

and discrimination

• Future directions:
• Combine multi-network GNN model w/ adversarial training

[1] Dai, Quanyu, et al. "Adversarial network embedding." Proceedings of the AAAI Conference on Artificial 
Intelligence. Vol. 32. No. 1. 2018. - 197 -



Temporal Multi-network Embedding

• Motivations:
• Real-world data is often dynamic

• Direct application of static method is costly

• Challenges:
• How to leverage dynamics (e.g., representation smoothness)

• How to improve efficiency w/o using static method 

• Future directions:
• Matrix approximation to avoid unnecessary re-computations

• Dynamic multi-network embedding-based methods
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Clustering/Ranking on Generalized NoN

• Motivations:
• Generalized NoN is more complex than NoN model

• Ranking/clustering problems are also more complex

• Challenges:
• How to construct real-world data as generalized NoN

• How to generalized existing ranking/clustering methods

• Future directions:
• Hierarchical label propagation-based optimization method

• Novel random walk-based strategy for personalized ranking
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Diverse Multi-network Applications
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Future Directions: Diverse Multi-
network Applications

Multi-network for 
knowledge graphs

Multi-network for 
bio-informatics

Multi-network for 
recommender 

system

Multi-network
for graph 

classification

• Multiplex networks 
for knowledge 
graph completion

• Multi-view network 
for neuroimage 
analysis

• Hypergraphs for 
recommender 
system

• Multi-layered 
network for cross-
domain 
recommendation

• Multiple structure-
view learning for 
graph classification



Multiplex Networks for Knowledge 
Graph Completion (KGC)

• Motivation: Mining missing triples from knowledge graph 

• Challenges: 
• KGs are often sparse (many missing links)

• How to leverage complementary knowledge from different sources

• Future Directions:
• Construct multiplex knowledge graph for KGs of different sources

• Multi-task learning: jointly learn the KGC with KG entity alignment 
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Multi-view network for neuroimage analysis

• Motivations: 
• Neuroimaging: important information source for neurodegenerative disease

• Assist clinical diagnose with multi-network mining methods

• Challenges:
• Neuroimage is often multi-view and heterogeneous

• Future directions:
• Apply multi-view GNN-based model on the neuroimage classification

• E.g., On Parkinson’s Progression Markers Initiative (PPMI) data:

[1] Zhang, Xi, et al. "Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson’s
disease." AMIA Annual Symposium Proceedings. Vol. 2018. American Medical Informatics Association, 2018.
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Hypergraphs for Recommender System

• Motivations:
• Hypergraphs for bundle/high-order recommendation

• Focus: recommend a set of items

• Challenges:
• How to construct the hypergraphs for bundles

• How to incorporate the high-order relation of hypergraphs

• Future directions: 
Bundles as heterogeneous hyperedges Bundles as multi-network node set
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Multi-layered Network For Cross-domain 
Recommendation
• Motivations:

• How to transfer knowledge across domains in recommendation

• How to recommend items from different domains to users

• Challenges:
• How to handle cold start issue from certain domains of items?

• How to recommend bundles of items from different domains?

• Future directions:
• Multi-domain data -> multi-layered networks

• Random walk-based embedding

• GNN-based embedding

[1] Jiang, Meng, et al. "Social recommendation with cross-domain transferable knowledge." IEEE transactions 
on knowledge and data engineering 27.11 (2015): 3084-3097.
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Multi-networks For Graph Classification

• Motivations:
• Traditional graph classification: single graph

• Can not handle complicated objects containing complex structures

• Challenge:
• How to classify complex objects from multiple structure views?

• Future directions:
• Complex objects as multi-networks (bag of networks)

• Collectively leverage substructures and features from multi-networks

[1] Wu, Jia, et al. "Multiple structure-view learning for graph classification." IEEE transactions on neural networks and 
learning systems 29.7 (2017): 3236-3251. - 205 -



Summary

• Background and Motivation:
• Multi-networks: multi-sourced, complex network data models

• Multi-network mining: challenging, important graph mining tools

• Multi-network models:
• Five types of representative multi-network data models

• A unified view of all the introduced multi-network models

• Multi-network mining algorithms:
• Algorithms for traditional/novel mining tasks and applications

• Future directions
• Novel multi-network models

• Advanced multi-network mining algorithms

• Diverse multi-network applications
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References: Related Tutorials

• Hypergraph Learning: Methods, Tools and Applications in Medical Image Analysis (MICCAI 2019).
http://gaoyue.org/en/more/index.htm

• Si Zhang and Hanghang Tong. 2020. Network Alignment: Recent Advances and Future Directions. Proceedings 
of the 29th ACM International Conference on Information & Knowledge Management. Association for 
Computing Machinery, New York, NY, USA.

• Jiawei Han, Yizhou Sun, Xifeng Yan, and PhilipS Yu.2010.Mining heterogeneous information networks. In 
Tutorial at the 2010 ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD’10), Washington, DC.

• Haochen Chen, Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. "A tutorial on network embeddings." arXiv
preprint arXiv:1808.02590 (2018).
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References: Data and Code

• FINAL: https://sizhang2.web.illinois.edu/resources/FINAL-KDD16.zip

• FASCINATE: https://github.com/chenannie45/FASCINATE

• MANE: http://www.ece.virginia.edu/~jl6qk/code/MANE.zip

• DMGI: https://github.com/pcy1302/DMGI

• CMM: https://github.com/muhanzhang/HyperLinkPrediction

• DHNE: https://github.com/tadpole/DHNE

• CrossRank: https://github.com/nijingchao/NoNCrossRank

• NoNClus: https://github.com/nijingchao/NoNClus

• SyTE: https://github.com/boxindu/SYTE
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