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Multiple Networks Are Prevalent!
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What Is Network Alignment?

= Find node correspondence across networks
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Other Applications

= Knowledge completion
IMDb

—
Iocated in MME[
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Other Applications

®* Fraud detection

looks normal looks normal money laundering?
— Unsuspicious patterns become suspicious!

— Question: How to identify the correspondences across networks?
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Network Alignment: How to

= Topological alignment

— If two nodes are aligned, their neighbors are likely to be aligned
= Attributed alignment [Zhang'16]

— Consider both topological and attribute consistency

= Embedding-based alignment [Liu'10]

— Alignhed nodes are closed in the embedding space

Twitter Network 300
B w >
200 ’

o e
k n h n n o @9 mil_=n
L A hue_an

' -
WY Bar_tw

K h - n P tim_fs
-200 il jac_tw

m. rad_fs

-300 ‘ “ iy jos s
j I st j - 1 1 e J_Es_t“'
-400 olg jam_tw

Foursquare Network 00 s Jam_fe

T-500 -500 -400 -300 -200 -100 D 100 200

Lab Arizona State University



Network Alignment: How to (con’t) /° %,

= Topological alignment: FINAL-P [Zhang'16]
— if two nodes are likely to be aligned (i.e., similar)

— their close neighbors are likely to be aligned (similar)

= Optimization formulation
min asi(I—A; @ By)s; + (1 — a)lls; — hqll5
— A4, B, are symmetrically normalized adjacency matrices
— 541, h; are the vectorization of alignment §; and preference H,
— convex optimization - global optimal solution
= Optimization algorithm
— fixed point solution: §; = aB;S;A;{+ (1 —a)H,
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Network Alignment: Limitations

= EXisting methods
— Align networks at node level (and cluster level)

— Have an at least quadratic computational complexity

= Rich patterns in networks

— E.qg., hierarchical cluster-within-clusters structure

soccer

= Question: how to align networks at different granularities?
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Challenge #1: Alignment Accuracy

= Error propagation through different levels

soccer

— If soccer in G4 is aligned with basketball in G,
on, ow
— Next cluster level: £2" in G; cannot be aligned with F-fli: In G,

LaLiga

. ow , : .
— Node level: nodes in cluster §&&* in G; can’t be aligned with
. Sy . LaLiga
nodes in cluster %" in G,

aliga

= Question: How to mitigate error propagation?
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Challenge #2: Scalability

= Time complexity
— At least 0(n?) due to dense matrix multiplication
= Space complexity
— At least 0(n?) to store the dense alignment matrix

= Question: How can we reduce the complexity?
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Outline

= Motivations

= Q1: Moana Formulation
= Q2: Moana Algorithm

= Experimental Results

= Conclusions
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Prob. Def: Multilevel Network Alignment

= Given:
— (1) adjacency matrices A, B; of two undirected networks;
— (2) a sparse prior alignment preference Hq;
— (3) the number of levels L > 2 of interests.
" Find: a set of alignment matrices §; at level-[, [ =1, -, L

— where S, indicates the alignment at the node level

= An illustrative example
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Moana Formulation #1: Multilevel Optimization

= Generic strategy

— coarsening —» alignment 2| interpolation

= Alignment interpolations 4_/

— bilinear interpolations by P; € RP*™ @, € R1*™2 (p;<nq{,q; < ny)

- w.l.o.g., S; = QI'S,P, between level-1 & level-2

= Multilevel alignment formulation

FINAL-P
. 1 T —_ —_— - 2
Level-1: min as; I-A; ®@Bs;i + (1 —a)llsi —hillz i ode level

‘ If P,PT =Tand Q,Q] =1
Level-2:  min asy(I —A; @ By)s; + (1 — a)lls, — hyll5
- Where AZ — P1A1PT, B2 = QlBlQ’{ and Hz — Q1H1P’{
— same properties (e.g., convexity) and algorithm as FINAL-P

— ‘good’ (semi-) orthogonal P, Q; can make A4,, B, well-represented
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Moana Formulation #2: Perfect Interpolation

= Alignment error propagation
— imperfect interpolations bring errors to §; even from optimal S}, ;
— mathematically, S; = Q!S;,,P, if P, Q; are not well-chosen

— errors can be propagated or diverged to level-(I — 1)

= Perfect interpolation
—ifP;,Q; (l=1,--+,L — 1) are orthogonal

—then S; = Q7s;, P, where S},S;,, are optimal solutions at level-
and level-(1 + 1)

— proof in the paper
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Outline

= Motivations v

= Q1: Moana Formulation
= Q2: Moana Algorithm

= Experimental Results

= Conclusions

v’
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Moana Algorithm #1: Coarsening

= Generic strategy

—|coarsening | alignment - interpolation

: Network\c‘oarsening by P, Q,
~ A4, = PJAP],B1 = QBQ]
= Requirements on P;, Q,
— perfect interpolation: they are orthogonal matrix

— efficient computation: they are sparse matrix

— informative coarsening: they can uncover hierarchical
cluster-within-clusters structures
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Moana Algorithm #1: Coarsening (Con’t)

= Multiresolution matrix factorization [Kondor'14]

S, _4 active sets S,

(

P4 P, P, A P]

)- () () () () (%) - (R

P;

&

Pi_ AL

— IT is to reorder for visualization (no need to calculate)

— P, contains: (1) a rotation matrix block, (2) an identity matrix block

— active set §; indicates nodes at the [-th granularity (i.e., clusters)

= Coarsening procedure
o "'P2P1A1PIP£"'P2—1 =A, -4,
- Q-1 Q2Q1BlQ{Q£ QZ—1 =B, - EL

)

« Orthogonalit v’
e Sparsity
. Informativeness v~

= Remark: $(Sg,, 84,) Indicates the alignment among clusters

at the [-th granularity
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Moana Algorithm #2: Alignment

= Generic strategy

~ AL1 0
. - ) . Ap =114 0 A
— coarsening —>|alignment|=> interpolation ) B, o2
. BL = HB 1 ~
= Alignment across the coarsest networks L 0 B,

- B 01[S, S 1[4 0 H H
0 B, |[S, S, llo 4, H,, H,

‘ block-wise computation
S, =aB, S, 4, +(1-a)f, Si,=aB,S . A +(1-nH,
S, =aB, S, A, +(-oH, 5,=0-a)(I-dd, Q8 ) h,
— matrix composition: e.g., S.(Sz,,S4,) = S1,, S.(S5,,S4,) = 5L,
= Alignment at finer levels

— perfect interpolations: S, = Q1 S, P,
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Moana Algorithm: Analysis

= Alignment error bound 4, d\() B,
errors / AN

5.
=
S —S 2€k : i - l
I S ”l”Fgl V=1L TAEA S| .
LIF A, é = %>Bz
where € = \/%(517”2 + 8,11 + 6162), A, é %

8, = ||A, —A,||,, 62 = ||BL — B.]|.

no error
k is condition number, r{, r, are ranks
= Complexity analysis
— linear time and space complexity
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Outline

= Motivations v

= Q1: Moana Formulation
= Q2: Moana Algorithm

= Experimental Results

= Conclusions

v’

v’

-19 -

DATA
Lab

Arizona State University



Experimental Setup

= Datasets

— Gr-Qc network vs. its permutation (nodes: 5,241 vs. 5,241)

— Google+ network vs. its permutation (nodes: 23,628 vs. 23,628)

— Amazon co-purchasing networks (nodes: 74,596 vs. 66,951)
— ACM vs DBLP coauthor networks (nodes: 9,872 vs. 9,916)

= Evaluation objectives

— Effectiveness: how accurate is our algorithm in aligning networks?

— Efficiency: how fast and scalable is our algorithm?

= Comparison methods
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R1: Effectiveness Results

= Effectiveness in node-level alignment

=¥ Moana =@ ~AMG-F
=& -FINAL =& -HubAlign

—#—Moana=G r AMG-F =& :Umeyama PriorSim
=& -FINAL =& -HubAlign =2 :ModuleAlign = [» ‘iNeat

=& -Umeyama =[> -iNeat
PriorSim

]
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Observations:
(1) the performance of Moana is close to FINAL-P;
(2) Moana outperforms all other methods.
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R2: Effectiveness Results

= Effectiveness in cluster-level alignment

1

= ot =
B = =)

=
o

cluster alignment accuracy

=

level of clusters

Observations: Moana achieves a good performance in
cluster alignment at different levels.
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R3: Case Study on Multilevel Alignment

= A case study on Zachary’'s Karate networks

Interpolation

o
A+

= : Alignment|

Observations: Moana can unveil meaningful alignment of
clusters at different granularities.
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R4: Quality-Speed Balance
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Observations: Moana can achieve a better quality-speed balance.
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R5: Scalability
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(1) Moana scales linearly w.r.t. the number of edges;
(2) Moana scales linearly w.r.t. the number of nonzero elements in H;.
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Outline

= Motivations v

= Q1: Moana Formulation v’
= Q2: Moana Algorithm v’

= Experimental Results v’

= Conclusions
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Conclusions

= Multilevel network alignment
— Q1: Formulation
— Al: Multilevel optimization + perfect interpolation
— Q2: Scalability
— A2: Moana algorithm
= Results
— Moana outperforms most baseline methods in node alignment
— Moana achieves good performance in cluster alignment
— Moana has linear complexity
= More in paper

— Proof of algorithm analysis & more experimental results
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