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Multiple Networks Are Prevalent!

Scenarios

social networks

transaction networks

PPI networks

yeast elegans fly mouse

knowledge graphs
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What Is Network Alignment?

▪ Find node correspondence across networks
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Other Applications

▪ Knowledge completion

located in
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Other Applications

▪ Fraud detection

– Unsuspicious patterns become suspicious!

– Question: How to identify the correspondences across networks?

looks normal looks normal money laundering?
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Network Alignment: How to

▪ Topological alignment

– If two nodes are aligned, their neighbors are likely to be aligned

▪ Attributed alignment [Zhang’16]

– Consider both topological and attribute consistency

▪ Embedding-based alignment [Liu’16]

– Aligned nodes are closed in the embedding space
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Network Alignment: How to (con’t)

▪ Topological alignment: FINAL-P [Zhang’16]

– if two nodes are likely to be aligned (i.e., similar)

– their close neighbors are likely to be aligned (similar)

▪ Optimization formulation

– 𝑨1, 𝑩1 are symmetrically normalized adjacency matrices

– 𝒔1, 𝐡1 are the vectorization of alignment 𝑺1 and preference 𝑯1

– convex optimization → global optimal solution

▪ Optimization algorithm

– fixed point solution: 𝑺1 = 𝛼𝑩1𝑺1𝑨1 + 1 − 𝛼 𝑯1

min
𝒔1

𝛼𝒔1
𝑇 𝑰 − 𝑨1 ⊗𝑩1 𝒔1 + 1 − 𝛼 𝒔1 − 𝒉1 2

2
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Network Alignment: Limitations

▪ Existing methods

– Align networks at node level (and cluster level)

– Have an at least quadratic computational complexity

▪ Rich patterns in networks

– E.g., hierarchical cluster-within-clusters structure

▪ Question: how to align networks at different granularities?

NBA

CBA

basketball

soccer

NBA

CBA

soccer

basketball
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Challenge #1: Alignment Accuracy

▪ Error propagation through different levels

– If soccer in 𝓖𝟏 is aligned with basketball in 𝓖𝟐

– Next cluster level:       in 𝓖𝟏 cannot be aligned with       in 𝓖𝟐

– Node level: nodes in cluster       in 𝓖𝟏 can’t be aligned with 

nodes in cluster       in 𝓖𝟐

▪ Question: How to mitigate error propagation?

NBA

CBA

basketball

soccer

NBA

CBA

soccer

basketball
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Challenge #2: Scalability

▪ Time complexity

– At least 𝑂(𝑛2) due to dense matrix multiplication 

▪ Space complexity

– At least 𝑂(𝑛2) to store the dense alignment matrix

▪ Question: How can we reduce the complexity?
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Outline

▪ Motivations

▪ Q1: Moana Formulation

▪ Q2: Moana Algorithm

▪ Experimental Results

▪ Conclusions
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Prob. Def: Multilevel Network Alignment

▪ Given:

– (1) adjacency matrices ഥ𝑨1, ഥ𝑩1 of two undirected networks;

– (2) a sparse prior alignment preference 𝑯1;

– (3) the number of levels 𝐿 ≥ 2 of interests.

▪ Find: a set of alignment matrices 𝑺𝑙 at level-𝑙, 𝑙 = 1,⋯ , 𝐿

– where 𝑺1 indicates the alignment at the node level

▪ An illustrative example
𝑺3 𝑺1
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Moana Formulation #1: Multilevel Optimization

▪ Generic strategy

– coarsening → alignment → interpolation

▪ Alignment interpolations

– bilinear interpolations by 𝑷𝑙 ∈ 𝑅
𝑝𝑙×𝑛1 , 𝑸𝑙 ∈ 𝑅

𝑞𝑙×𝑛2 (𝑝𝑙≤ 𝑛1, 𝑞𝑙 ≤ 𝑛2)

– w.l.o.g., 𝑺1 = 𝑸1
𝑇𝑺2𝑷1 between level-1 & level-2

▪ Multilevel alignment formulation

– where 𝑨2 = 𝑷1𝑨1𝑷1
𝑇 , 𝑩2 = 𝑸1𝑩1𝑸1

𝑇 and 𝑯2 = 𝑸1𝑯1𝑷1
𝑇

– same properties (e.g., convexity) and algorithm as FINAL-P

– ‘good’ (semi-) orthogonal 𝑷1, 𝑸1 can make 𝑨2, 𝑩2 well-represented

min
𝒔1

𝛼𝒔1
𝑇 𝑰 − 𝑨1 ⊗𝑩1 𝒔1 + 1 − 𝛼 𝒔1 − 𝒉1 2

2
Level-1:

min
𝒔2

𝛼𝒔2
𝑇 𝑰 − 𝑨2 ⊗𝑩2 𝒔2 + 1 − 𝛼 𝒔2 − 𝒉2 2

2Level-2:

If 𝑷1𝑷1
𝑇 = 𝑰 and 𝑸1𝑸1

𝑇 = 𝑰

FINAL-P 

at node level

- 12 -



Arizona State University

Moana Formulation #2: Perfect Interpolation 

▪ Alignment error propagation

– imperfect interpolations bring errors to 𝑺𝑙 even from optimal 𝑺𝑙+1
∗

– mathematically, 𝑺𝑙
∗ ≠ 𝑸𝑙

𝑇𝑺𝑙+1
∗ 𝑷𝑙 if 𝑷𝑙 , 𝑸𝑙 are not well-chosen

– errors can be propagated or diverged to level- 𝑙 − 1

▪ Perfect interpolation 

– if 𝑷𝑙 , 𝑸𝑙 𝑙 = 1,⋯ , 𝐿 − 1 are orthogonal

– then 𝑺𝑙
∗ = 𝑸𝑙

𝑇𝑺𝑙+1
∗ 𝑷𝑙 where 𝑺𝑙

∗, 𝑺𝑙+1
∗ are optimal solutions at level-𝑙

and level- 𝑙 + 1

– proof in the paper
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Outline

▪ Motivations

▪ Q1: Moana Formulation

▪ Q2: Moana Algorithm

▪ Experimental Results

▪ Conclusions
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Moana Algorithm #1: Coarsening

▪ Generic strategy

– coarsening → alignment → interpolation

▪ Network coarsening by 𝑷𝑙 , 𝑸𝑙

– 𝑨𝑙+1 = 𝑷𝑙𝑨𝑙𝑷𝑙
𝑇 , 𝑩𝑙+1 = 𝑸𝑙𝑩𝑙𝑸𝑙

𝑇

▪ Requirements on 𝑷𝑙 , 𝑸𝑙

– perfect interpolation: they are orthogonal matrix

– efficient computation: they are sparse matrix

– informative coarsening: they can uncover hierarchical 

cluster-within-clusters structures
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Moana Algorithm #1: Coarsening (Con’t)

▪ Multiresolution matrix factorization [Kondor’14]

– 𝚷 is to reorder for visualization (no need to calculate)

– 𝑷𝑙 contains: (1) a rotation matrix block, (2) an identity matrix block

– active set 𝒮𝑙 indicates nodes at the 𝑙-th granularity (i.e., clusters)

▪ Coarsening procedure

– 𝑷𝐿−1⋯𝑷2𝑷1𝑨1𝑷1
𝑇𝑷2

𝑇⋯𝑷𝐿−1
𝑇 = 𝑨𝐿 → ෩𝑨𝐿

– 𝑸𝐿−1⋯𝑸2𝑸1𝑩1𝑸1
𝑇𝑸2

𝑇⋯𝑸𝐿−1
𝑇 = 𝑩𝐿 → ෩𝑩𝐿

▪ Remark: 𝑺(𝒮𝐵𝑙 , 𝒮𝐴𝑙) indicates the alignment among clusters 

at the 𝑙-th granularity

• Orthogonality

• Sparsity

• Informativeness

𝚷 𝚷T

𝑨1𝑷1 𝑷1
𝑇𝑷2𝑷𝐿−1 𝑷2

𝑇 𝑷𝐿−1
𝑇 ෩𝑨𝐿

active sets 𝒮2𝒮𝐿−1 𝒮𝐿 ෩𝑨𝐿1
෩𝑨𝐿2
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Moana Algorithm #2: Alignment

▪ Generic strategy

– coarsening → alignment → interpolation

▪ Alignment across the coarsest networks

– matrix composition: e.g., 𝑺𝐿 𝒮𝐵𝐿 , 𝒮𝐴𝐿 = ෨𝑺𝐿1 , 𝑺𝐿
ҧ𝒮𝐵𝐿 ,

ҧ𝒮𝐴𝐿 = ෨𝑺𝐿4

▪ Alignment at finer levels

– perfect interpolations: 𝑺𝑙 = 𝑸𝑙
𝑇𝑺𝑙+1𝑷𝑙

෩𝑺𝐿 = 𝛼
෩𝑩𝐿1 𝟎

𝟎 ෩𝑩𝐿2

෩𝑺𝐿1
෩𝑺𝐿2

෩𝑺𝐿3
෩𝑺𝐿4

෩𝑨𝐿1 𝟎

𝟎 ෩𝑨𝐿2
+ (1 − 𝛼)

෩𝑯𝐿1
෩𝑯𝐿2

෩𝑯𝐿3
෩𝑯𝐿4

෩𝑺𝐿1 = 𝛼෩𝑩𝐿1
෩𝑺𝐿1

෩𝑨𝐿1 + 1 − 𝛼 ෩𝑯𝐿1
෩𝑺𝐿2 = 𝛼෩𝑩𝐿1

෩𝑺𝐿2
෩𝑨𝐿2 + 1 − 𝛼 ෩𝑯𝐿2

෩𝑺𝐿3 = 𝛼෩𝑩𝐿2
෩𝑺𝐿3

෩𝑨𝐿1 + 1 − 𝛼 ෩𝑯𝐿3

෤𝒔𝐿4 = 1 − 𝛼 𝑰 − 𝛼෩𝑨𝐿2 ⊗
෩𝑩𝐿3

−1෩𝒉𝐿4

block-wise computation
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Moana Algorithm: Analysis

▪ Alignment error bound

▪ Complexity analysis

– linear time and space complexity

𝑨1

𝑨2

෩𝑨𝐿

𝑩1

𝑩2

෩𝑩𝐿

𝑺𝐿

𝑺2

𝑺1
no error

errors 

if 𝑨𝐿 ≠ ෩𝑨𝐿
𝑺𝑙
∗ − 𝑺𝑙 𝐹

𝑺𝑙 𝐹
≤

2𝜖𝜅

1 − 𝜖𝜅
, ∀𝑙 = 1,⋯ , 𝐿

𝜖 =
𝛼

2𝑛
𝛿1𝑟2 + 𝛿2𝑟1 + 𝛿1𝛿2 , 

𝛿1 = 𝑨𝐿 − ෩𝑨𝐿 𝐹
, 𝛿2 = 𝑩𝐿 − ෩𝑩𝐿 𝐹

,

𝜅 is condition number, 𝑟1, 𝑟2 are ranks

where
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Outline

▪ Motivations

▪ Q1: Moana Formulation

▪ Q2: Moana Algorithm

▪ Experimental Results

▪ Conclusions
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Experimental Setup

▪ Datasets

– Gr-Qc network vs. its permutation (nodes: 5,241 vs. 5,241)

– Google+ network vs. its permutation (nodes: 23,628 vs. 23,628)

– Amazon co-purchasing networks (nodes: 74,596 vs. 66,951)

– ACM vs DBLP coauthor networks (nodes: 9,872 vs. 9,916)

▪ Evaluation objectives

– Effectiveness: how accurate is our algorithm in aligning networks?

– Efficiency: how fast and scalable is our algorithm?

▪ Comparison methods

Moana AMG-FINAL Umeyama PriorSim

FINAL-P HubAlign ModuleAlign iNeat
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R1: Effectiveness Results

▪ Effectiveness in node-level alignment

Observations: 

(1) the performance of Moana is close to FINAL-P;

(2) Moana outperforms all other methods. 
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R2: Effectiveness Results

▪ Effectiveness in cluster-level alignment

Observations: Moana achieves a good performance in          

cluster alignment at different levels.
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R3: Case Study on Multilevel Alignment

▪ A case study on Zachary’s Karate networks

Observations: Moana can unveil meaningful alignment of 

clusters at different granularities.
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R4: Quality-Speed Balance

Observations: Moana can achieve a better quality-speed balance.
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R5: Scalability 

Observations: 

(1) Moana scales linearly w.r.t. the number of edges;

(2) Moana scales linearly w.r.t. the number of nonzero elements in 𝑯1.
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Outline

▪ Motivations

▪ Q1: Moana Formulation

▪ Q2: Moana Algorithm

▪ Experimental Results

▪ Conclusions
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Conclusions

▪ Multilevel network alignment

– Q1: Formulation

– A1: Multilevel optimization + perfect interpolation

– Q2: Scalability

– A2: Moana algorithm

▪ Results

– Moana outperforms most baseline methods in node alignment

– Moana achieves good performance in cluster alignment

– Moana has linear complexity

▪ More in paper

– Proof of algorithm analysis & more experimental results
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