Multilevel Network Alignment

Presented by Si Zhang (ASU)

Si Zhang

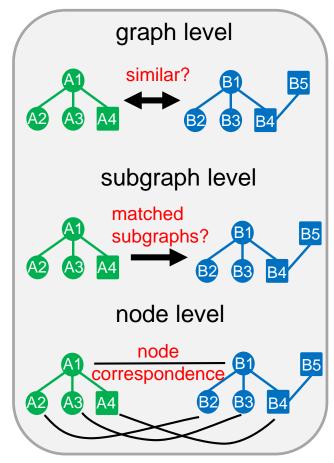
Hanghang Tong Ross Maciejewski

Tina Eliassi-Rad

Multiple Networks Are Prevalent!

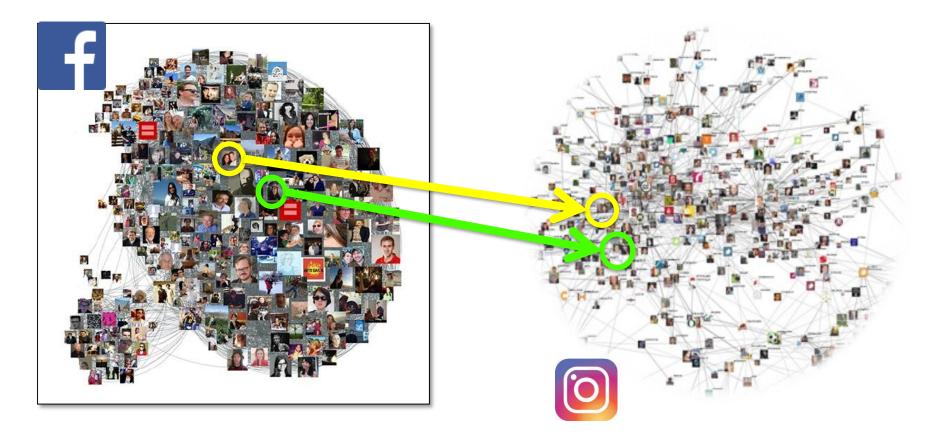
Scenarios

Tasks



What Is Network Alignment?

Find node correspondence across networks

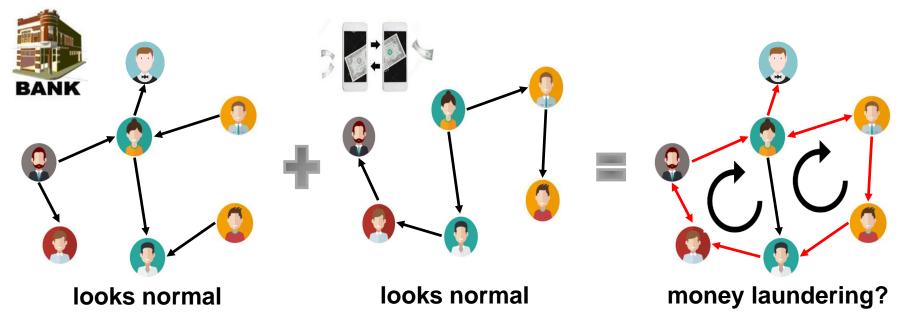


Other Applications

Knowledge completion

Other Applications

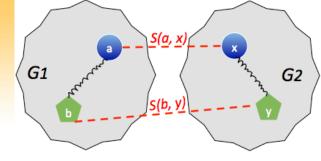
Fraud detection



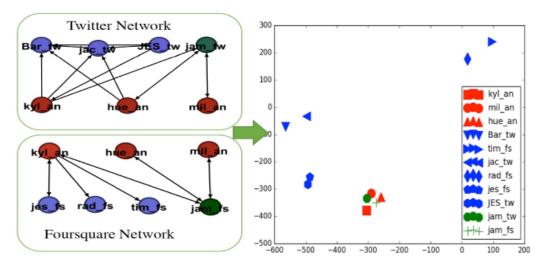
- Unsuspicious patterns become suspicious!
- Question: How to identify the correspondences across networks?

Network Alignment: How to

Topological alignment



- If two nodes are aligned, their neighbors are likely to be aligned
- Attributed alignment [Zhang'16]
 - Consider both topological and attribute consistency
- Embedding-based alignment [Liu'16]
 - Aligned nodes are closed in the embedding space



Network Alignment: How to (con't)

- Topological alignment: FINAL-P [Zhang'16]
 - if two nodes are likely to be aligned (i.e., similar)
 - their close neighbors are likely to be aligned (similar)
- Optimization formulation

 $\min_{\boldsymbol{s}_1} \alpha \boldsymbol{s}_1^T (\boldsymbol{I} - \boldsymbol{A}_1 \otimes \boldsymbol{B}_1) \boldsymbol{s}_1 + (1 - \alpha) \| \boldsymbol{s}_1 - \boldsymbol{h}_1 \|_2^2$

- $-A_1, B_1$ are symmetrically normalized adjacency matrices
- s_1 , h_1 are the vectorization of alignment S_1 and preference H_1
- convex optimization \rightarrow global optimal solution
- Optimization algorithm

- fixed point solution: $S_1 = \alpha B_1 S_1 A_1 + (1 - \alpha) H_1$

S(x,a)

 $\mathbf{S}(y,b)$

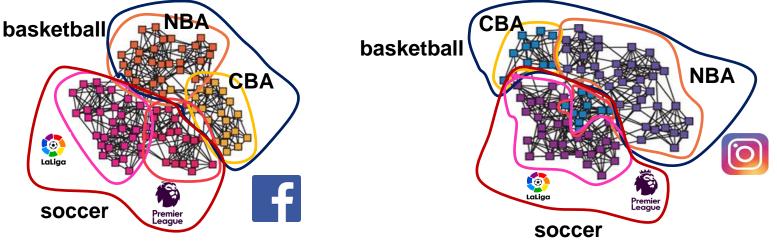
G2

G1 ()

Network Alignment: Limitations

Existing methods

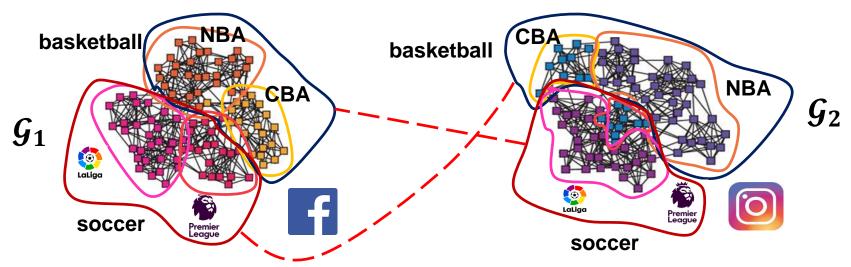
- Align networks at node level (and cluster level)
- Have an at least quadratic computational complexity
- Rich patterns in networks



Question: how to align networks at different granularities?

Challenge #1: Alignment Accuracy

Error propagation through different levels



- If soccer in \mathcal{G}_1 is aligned with basketball in \mathcal{G}_2
- Next cluster level: $\bigcup_{I \in I_{indian}}$ in \mathcal{G}_1 cannot be aligned with $\bigcup_{I \in I_{indian}}$ in \mathcal{G}_2
- Question: How to mitigate error propagation?

Challenge #2: Scalability

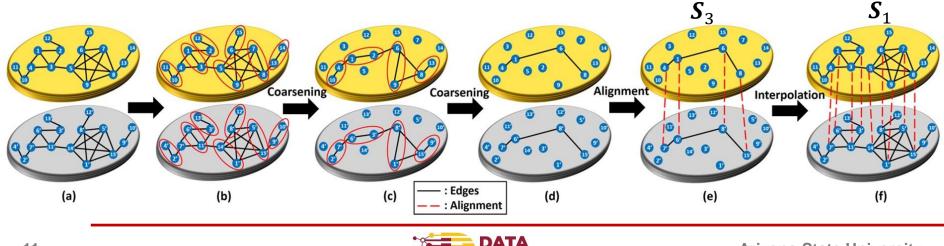
- Time complexity
 - At least $O(n^2)$ due to dense matrix multiplication
- Space complexity
 - At least $O(n^2)$ to store the dense alignment matrix
- Question: How can we reduce the complexity?

Outline

- Motivations
- Q1: Moana Formulation
- Q2: Moana Algorithm
- Experimental Results
- Conclusions

Prob. Def: Multilevel Network Alignment

- Given:
 - (1) adjacency matrices \overline{A}_1 , \overline{B}_1 of two undirected networks;
 - (2) a sparse prior alignment preference H_1 ;
 - (3) the number of levels $L \ge 2$ of interests.
- Find: a set of alignment matrices S_l at level-l, $l = 1, \dots, L$
 - where S_1 indicates the alignment at the node level
- An illustrative example



Moana Formulation #1: Multilevel Optimization

- Generic strategy
 - coarsening \rightarrow alignment \rightarrow interpolation
- Alignment interpolations
 - bilinear interpolations by $P_l \in R^{p_l \times n_1}$, $Q_l \in R^{q_l \times n_2}$ $(p_l \le n_1, q_l \le n_2)$
 - w.l.o.g., $S_1 = Q_1^T S_2 P_1$ between level-1 & level-2
- Multilevel alignment formulation Level-1: $\min_{s_1} \alpha s_1^T (I - A_1 \otimes B_1) s_1 + (1 - \alpha) ||s_1 - h_1||_2^2$ FINAL-P at node level • If $P_1 P_1^T = I$ and $Q_1 Q_1^T = I$ Level-2: $\min_{s_2} \alpha s_2^T (I - A_2 \otimes B_2) s_2 + (1 - \alpha) ||s_2 - h_2||_2^2$ - where $A_2 = P_1 A_1 P_1^T$, $B_2 = Q_1 B_1 Q_1^T$ and $H_2 = Q_1 H_1 P_1^T$
 - same properties (e.g., convexity) and algorithm as FINAL-P
 - 'good' (semi-) orthogonal P_1 , Q_1 can make A_2 , B_2 well-represented

Moana Formulation #2: Perfect Interpolation

- Alignment error propagation
 - imperfect interpolations bring errors to S_l even from optimal S_{l+1}^*
 - mathematically, $S_l^* \neq Q_l^T S_{l+1}^* P_l$ if P_l, Q_l are not well-chosen
 - errors can be propagated or diverged to level-(l 1)
- Perfect interpolation
 - if \boldsymbol{P}_l , \boldsymbol{Q}_l $(l = 1, \dots, L 1)$ are orthogonal
 - then $S_l^* = Q_l^T S_{l+1}^* P_l$ where S_l^*, S_{l+1}^* are optimal solutions at level-land level-(l + 1)
 - proof in the paper

Outline

- Motivations
- Q1: Moana Formulation
- Q2: Moana Algorithm
- Experimental Results
- Conclusions

Moana Algorithm #1: Coarsening

Generic strategy

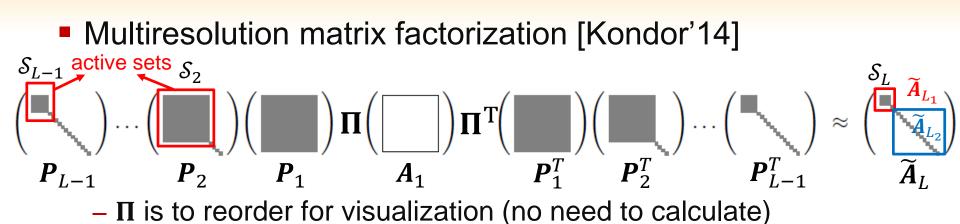
- coarsening \rightarrow alignment \rightarrow interpolation

• Network coarsening by P_l , Q_l

$$-\boldsymbol{A}_{l+1} = \boldsymbol{P}_l \boldsymbol{A}_l \boldsymbol{P}_l^T, \boldsymbol{B}_{l+1} = \boldsymbol{Q}_l \boldsymbol{B}_l \boldsymbol{Q}_l^T$$

- Requirements on P_l , Q_l
 - perfect interpolation: they are orthogonal matrix
 - efficient computation: they are sparse matrix
 - informative coarsening: they can uncover hierarchical cluster-within-clusters structures

Moana Algorithm #1: Coarsening (Con't)



 $-P_{l}$ contains: (1) a rotation matrix block, (2) an identity matrix block

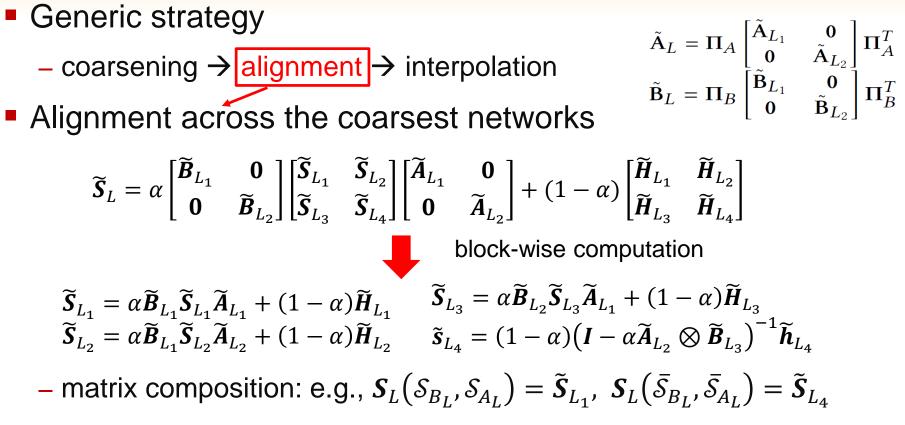
- active set S_l indicates nodes at the *l*-th granularity (i.e., clusters)
- Coarsening procedure

$$- \boldsymbol{P}_{L-1} \cdots \boldsymbol{P}_2 \boldsymbol{P}_1 \boldsymbol{A}_1 \boldsymbol{P}_1^T \boldsymbol{P}_2^T \cdots \boldsymbol{P}_{L-1}^T = \boldsymbol{A}_L \to \widetilde{\boldsymbol{A}}_L$$

 $- \boldsymbol{Q}_{L-1} \cdots \boldsymbol{Q}_2 \boldsymbol{Q}_1 \boldsymbol{B}_1 \boldsymbol{Q}_1^T \boldsymbol{Q}_2^T \cdots \boldsymbol{Q}_{L-1}^T = \boldsymbol{B}_L \to \widetilde{\boldsymbol{B}}_L$

- Orthogonality
 Sparsity
- Informativeness y
- Remark: $S(S_{B_l}, S_{A_l})$ indicates the alignment among clusters at the *l*-th granularity

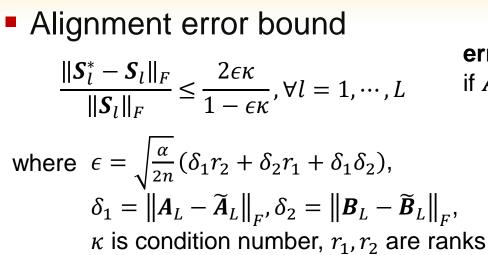
Moana Algorithm #2: Alignment

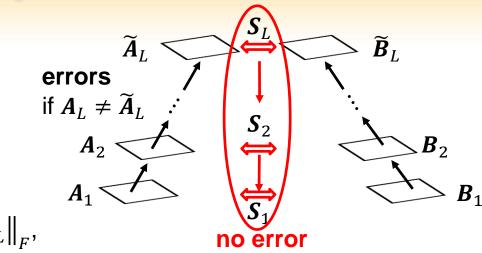


Alignment at finer levels

- perfect interpolations: $S_l = Q_l^T S_{l+1} P_l$

Moana Algorithm: Analysis





- Complexity analysis
 - linear time and space complexity

Outline

- Motivations
- Q1: Moana Formulation
- Q2: Moana Algorithm
- Experimental Results
- Conclusions

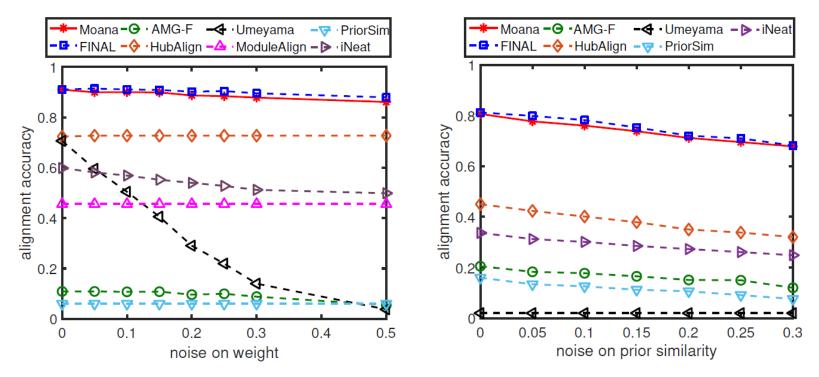
Experimental Setup

- Datasets
 - Gr-Qc network vs. its permutation (nodes: 5,241 vs. 5,241)
 - Google+ network vs. its permutation (nodes: 23,628 vs. 23,628)
 - Amazon co-purchasing networks (nodes: 74,596 vs. 66,951)
 - ACM vs DBLP coauthor networks (nodes: 9,872 vs. 9,916)
- Evaluation objectives
 - Effectiveness: how accurate is our algorithm in aligning networks?
 - Efficiency: how fast and scalable is our algorithm?
- Comparison methods

Moana	AMG-FINAL	Umeyama	PriorSim
FINAL-P	HubAlign	ModuleAlign	iNeat

R1: Effectiveness Results

Effectiveness in node-level alignment

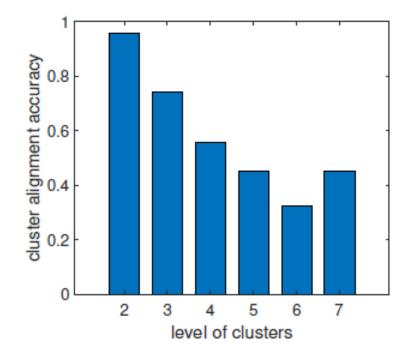


Observations:

- (1) the performance of Moana is close to FINAL-P;
- (2) Moana outperforms all other methods.

R2: Effectiveness Results

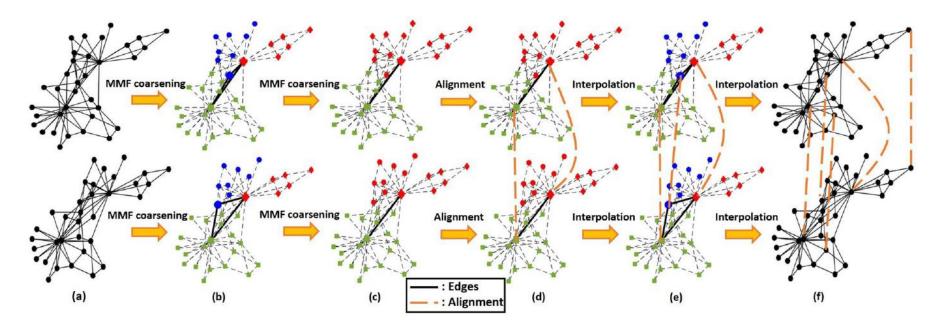
Effectiveness in cluster-level alignment



Observations: Moana achieves a good performance in cluster alignment at different levels.

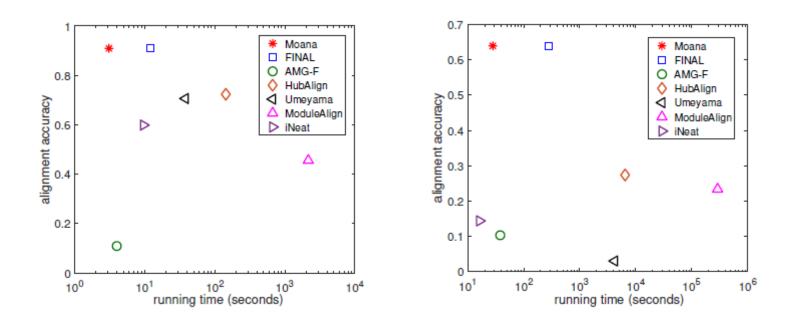
R3: Case Study on Multilevel Alignment

A case study on Zachary's Karate networks



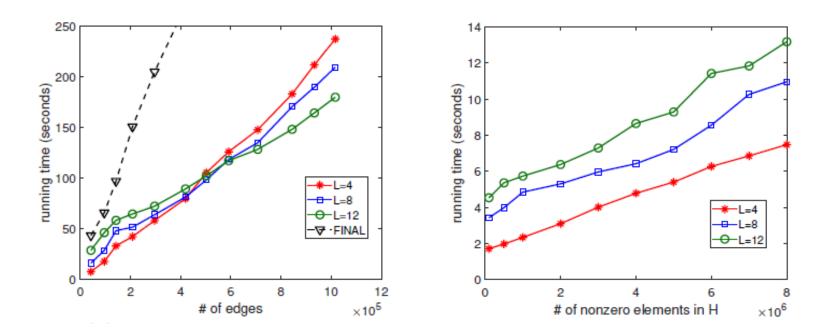
Observations: Moana can unveil meaningful alignment of clusters at different granularities.

R4: Quality-Speed Balance



Observations: Moana can achieve a better quality-speed balance.

R5: Scalability



Observations:

- (1) Moana scales linearly w.r.t. the number of edges;
- (2) Moana scales linearly w.r.t. the number of nonzero elements in H_1 .

Outline

- Motivations
- Q1: Moana Formulation
- Q2: Moana Algorithm
- Experimental Results
- Conclusions

Conclusions

- Multilevel network alignment
 - Q1: Formulation
 - A1: Multilevel optimization + perfect interpolation
 - Q2: Scalability
 - A2: Moana algorithm
- Results
 - Moana outperforms most baseline methods in node alignment
 - Moana achieves good performance in cluster alignment
 - Moana has linear complexity
- More in paper
 - Proof of algorithm analysis & more experimental results

