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Networks are prevalent in many areas and are often collected from multiple sources. However, due to the

veracity characteristics, more often than not, networks are incomplete. Network alignment and network

completion have become two fundamental cornerstones behind a wealth of high-impact graph mining ap-

plications. The state-of-the-art have been addressing these two tasks in parallel. That is, most of the existing

network alignment methods have implicitly assumed that the topology of the input networks for alignment

are perfectly known a priori, whereas the existing network completion methods admit either a single net-

work (i.e., matrix completion) or multiple aligned networks (e.g., tensor completion). In this article, we argue

that network alignment and completion are inherently complementary with each other, and hence propose

to jointly address them so that the two tasks can mutually benefit from each other. We formulate the prob-

lem from the optimization perspective, and propose an effective algorithm (iNeAt) to solve it. The proposed

method offers two distinctive advantages. First (Alignment accuracy), our method benefits from the higher-

quality input networks while mitigates the effect of the incorrectly inferred links introduced by the comple-

tion task itself. Second (Alignment efficiency), thanks to the low-rank structure of the complete networks and

the alignment matrix, the alignment process can be significantly accelerated. We perform extensive exper-

iments which show that (1) the network completion can significantly improve the alignment accuracy, i.e.,

up to 30% over the baseline methods; (2) the network alignment can in turn help recover more missing edges

than the baseline methods; and (3) our method achieves a good balance between the running time and the

accuracy, and scales with a provable linear complexity in both time and space.
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1 INTRODUCTION

Networks are prevalent and naturally appear in many areas. More often than not, in the big data
era, networks in many high-impact applications are collected from multiple sources (i.e., variety),
such as social networks from different social platforms, protein–protein interaction (PPI) networks
frommultiple tissues, and transaction networks frommultiple financial institutes. In order to inte-
grate the considerable information associated withmultiple networks, network alignment is of key
importance to find the node correspondence across networks. For example, by aligning the same
users in different transaction networks, the transaction patterns of users can be comprehended
to enhance the financial fraud detection. However, real-world networks are often incomplete (i.e.,
veracity) due to, for instance, the difficulties in data collections. As such, network completion (e.g.,
to infer the missing links) has become another key task which benefits many graph mining appli-
cations by providing higher-quality networks if handled properly.

Although themulti-sourced and incomplete characteristics often co-exist in many real networks,
the state-of-the-arts have been largely addressing network alignment and network completion
problems in parallel. For example, most of the existing network alignment methods based on topo-
logical consistency have implicitly assumed that the topology of the input networks for alignment
are perfectly known a priori [16, 42]. On the other hand, the existing network completion meth-
ods aim to infer the missing links in either a single network (e.g., by matrix completion [27]) or
multiple networks that are aligned beforehand (e.g., by tensor completion [24]). How can we align
two input incomplete networks when missing edges are unobserved in them?

A natural choice could be completion-then-alignment. That is, we first separately complete the
missing edges in the input networks by some existing network completion methods, followed by
the alignment across the resulting complete networks. However, there exist some fundamental
limits of this strategy on the alignment performance. First (Alignment accuracy), the promise of
this strategy lies in that by inferring the missing links of each input network, it would provide
higher-quality input networks for the alignment task. However, the completion task itself might
introduce noise (e.g., truly nonexistent edges), which might compromise, or even prevail the ben-
efits of the correctly inferred missing links for the alignment task. Second (Alignment efficiency),
the network alignment alone is already computationally costly. Most of the existing methods (even
with approximation, such as [43]) have a time/space complexity at leastO (n2), wheren is the num-
ber of nodes of the input networks, mainly due to the computation/storage of the alignment matrix
and the sparse matrix-matrix multiplication between the input adjacency matrices and the align-
ment matrix.1 Yet, network completion would make each input network even denser by adding
the missing edges. As a result, if we simply conduct the network alignment task on such densified
networks, it might make the computation even more intensive.

To address these limitations, we hypothesize that network alignment and network completion
can inherently complement each other due to the following reasons. First, (H1) alignment helps

completion. Intuitively, when many nodes in one network share similar connectivity patterns with
their corresponding aligned nodes (e.g., connecting to the similar sets of nodes) in another net-
work, the knowledge about the existence or absence of links in one network could help inferring
the missing links in another network via alignment if we can find such node correspondences
across networks. Second, (H2) completion helps alignment. As introduced before, network comple-
tion could potentially improve the qualities of input networks, leading to the enhancement of the
alignment accuracy. Moreover, network completion itself implicitly assumes a low-rank structure

1Although the empirical runtime of some existing methods (e.g., BigAlign [16]) is near-linear, the big-O time complexity of

these methods is still quadratic.
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on the input networks, which, if harnessed appropriately, will actually accelerate the alignment
process as we will show in the article.

Armed with these hypotheses, we propose to jointly address network alignment and network
completion problems so that the two tasks could mutually benefit from each other. To be spe-
cific, in order to leverage alignment for the completion task, we impose the low-rank structure
on the underlying (true) network, which matches not only the observed links of the correspond-
ing network, but also the auxiliary observations from the other network via the alignment matrix.
Second, in order to leverage the network completion for the alignment, we recast the network
alignment problem via the low-rank structures of the complete networks, which not only improves
the alignment accuracy, but also speeds up the alignment process. We formulate them into a joint
optimization problem and propose an effective algorithm to solve it.

The main contributions of the article are summarized as:

—Problem Definition. To our best knowledge, we are the first to jointly address the network
alignment and network completion tasks in an optimization framework.

—Algorithm and Analysis. We propose an effective algorithm (iNeAt) based on the mul-
tiplicative update to solve the optimization. We also analyze its correctness, convergence,
and complexity. In particular, we prove that the low-rank structure of the complete net-
works guarantees a low-rank structure of the alignment matrix, which in turn reduces the
time complexity of each iterative update to be linear. To our best knowledge, this is the first
known network alignment algorithm with a provable linear time complexity.

—Experiments. We evaluate the effectiveness and efficiency of the proposed algorithm by
extensive experiments. The experimental results demonstrate that (1) network alignment
and network completion can indeed benefit from each other in terms of alignment accuracy
and missing edges recovery rate, (2) our algorithm iNeAt achieves a better alignment and
completion quality, and meanwhile is faster than most of the baseline methods, and (3) our
algorithm is only linear w.r.t. the number of nodes in the networks.

The rest of the article is organized as follows. Section 2 defines the incomplete network align-
ment problem and provides some preliminaries of the article. Section 3 presents the proposed
optimization formulation of iNeAt and Section 4 gives an effective optimization algorithm, fol-
lowed by some analyses. Section 5 presents the experimental results. Related work and conclusion
are given in Sections 6 and 7.

2 PROBLEM DEFINITION

2.1 Problem Definition

Table 1 summarizes the main symbols and notations used throughout the article. We use bold
uppercase letters for matrices (e.g., A), bold lowercase letters for vectors (e.g., s), and lowercase
letters (e.g., α ) for scalars. We use A(i, j ) to denote the entry at the intersection of the i-th row and
j-th column of the matrix A. We denote the transpose of a matrix by a superscriptT (e.g., AT is the
transpose of A). The vectorization of a matrix (in the column order) is denoted by vec(·), and the
result vector is denoted by the corresponding bold lowercase letter (e.g., s = vec(S)). Equivalently,
the transformation of a vector to its correspondingmatrix is denoted by a de-vectorization operator
mat(·) (e.g., S = mat(s)). The trace of a matrix is denoted by Tr(·), and the diagonal matrix of a
vector is denoted by diag(·).

Many real-world networks are incomplete with missing edges. Although some incompleteness
scenarios may be possible (e.g., with the probabilities whether edges exist known a priori), in
our article, we only consider the network incompleteness where we only have the knowledge
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Table 1. Symbols and Notations

Symbols Definition

G1, G2 incomplete networks
A1,A2 two adjacency matrices of G1 and G2

n1, n2 # of nodes in G1 and G2

m1,m2 # of nodes in G1 and G2

S an n2 × n1 alignment matrix between G2 and G1

PΩ (·), PΩ̄ (·) an operator to project only to observed (unobserved) entries
U1,V1,U2,V2 low rank factorizations of A1 and A2

PΩ1 , PΩ2 projection matrix, all 1s at all observed entries
11, 12 1s vectors of length n1 and n2 respectively
λ,γ , β parameters
Tr[·] trace operator
diag(·) diagonal matrix of a vector

vec(·), mat(·) vectorization and de-vectorization operator
rank(·) the rank of a matrix
eig(·) eigenvalues of a matrix

about the existence (i.e., a value of 1) or the absence (i.e., a value of 0) of certain entries (denoted
by the set Ω) of its adjacency matrix. For the rest entries in the adjacency matrix, we do not know
if the corresponding links exist or not, and hence are represented as the question mark ?. Figure 1
presents an illustrative example. All solid lines represent the observed existing edges. As we can
see in Figure 1(a), the set of nodes (1,2,3,4) in the first incomplete network have similar topology
to the nodes (6′, 7′, 8′, 9′), possibly leading to a wrong alignment result that these two sets of
nodes are aligned within each other. However, the complete networks in Figure 1(b) (by filling
all the red lines) are identical, such as the cliques formed by nodes (1, 2, 3, 4) and (1′, 2′, 3′, 4′).
Thus, the set of nodes (1, 2, 3, 4) can be aligned to nodes (1′, 2′, 3′, 4′), respectively, so can the
rest of nodes. On the other hand, by completing two networks separately, noisy edges might be
incorrectly added (e.g., edge (4, 6)) and the true network structure would fail to be recovered.
The incorrectly recovered networks may further mislead the alignment results. Therefore, how
to align the incomplete networks while completing them is the key challenge this article aims to
address.

Problem 1. Incomplete Network Alignment.

Given: (1) Incomplete adjacency matrices A1, A2 of two undirected networks G1,G2, and

(2-optional) a prior node similarity matrix H across networks.

Output: (1) the n2 × n1 alignment/similarity matrix S, where S(x ,a) represents to what extent

node-a in G1 is aligned with node-x in G2, and (2) complete adjacency matrices A∗1, and A∗2.

2.2 Preliminaries

A - Network Alignment. Most existing network alignment algorithms (such as IsoRank [34] and
FINAL [43, 44]), explicitly or implicitly, are based on the topology consistency principle. Take FINAL

as an example, the topology consistency principle can be stated as follows.2 Given two pairs of
nodes, say (1) node-a in G1 and node-x in G2 and (2) node-b in G1 and node-y in G2, if nodes a and

2In [43], the authors generalize the topology consistency principle to further accommodate the additional node/edge at-

tribute information, which is outside the scope of this article.
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Fig. 1. An illustrative example. Figure 1(a) shows the input incomplete networks and Figure 1(b) shows part

of the alignment across two complete networks.

b are close neighbors and nodes x andy are also close neighbors, the topology consistency principle
assumes the similarity between a and x , and that between their respective close neighbors b and

y to be consistent, i.e., small [Ŝ(a,x ) − Ŝ(b,y)]2A1 (a,b)A2 (x ,y), where Ŝ is the similarity matrix.
Mathematically, this naturally leads to the following optimization problem.

min
ŝ

α ŝT (D − A1 ⊗ A2)ŝ + (1 − α )‖D
1
2 (ŝ − h)‖2F (1)

where ŝ, h are the vectorization of the similarity matrix Ŝ and the prior similarity matrix H, re-
spectively. D = D1 ⊗ D2 and D1,D2 are the diagonal degree matrix of A1,A2, respectively. Note

that instead of using Ŝ to infer the alignment as in [43], we use the scaled similarity matrix S

as the “soft” alignment matrix throughout our article, where S is the matrix form of s = Dŝ (i.e.,
S = mat(Dŝ)). In other words, the entries in the alignment matrix S measure to what extent the two
corresponding nodes are aligned together. Besides, the second regularization term in Equation (1)

is to avoid trivial solutions, such as a zero matrix Ŝ.
In order to solve the network alignment problem in Equation (1), we can either use an itera-

tive algorithm with a time complexity of O (nm) and a space complexity O (n2), or resort to its
closed-form solution whose time complexity could be as high as O (n6) where we assume that the
two networks have a comparable number of edges and nodes, i.e., O (m) = O (m1) = O (m2) and
O (n) = O (n1) = O (n2). In [43], the authors proposed to approximate the closed-form solution via
eigenvalue decomposition. But it is still quadratic in both time and space.

B - Network Completion. As mentioned earlier, incomplete networks might have many unob-
served missing edges, which could significantly change the true network structure and hence mis-
lead the topology-based network alignment. One straightforward way to address this issue is by
using matrix completion. Most of the existing matrix completion methods are centered around
minimizing the nuclear norm of the matrix [32]. However, since real-world networks are usually
very large, it is very costly to directly minimize the nuclear norm of the adjacencymatrices. In [33],
the authors show that the nuclear norm ‖A1‖∗ = minU1,V1

1
2 (‖U1‖2F + ‖V1‖2F ) where A1 = U1V

T
1 ,

which allows the factorization-based completion methods. To be specific, we can recover the com-
plete networks by minimizing the following objective function:

J1 (U1,V1,U2,V2) =
1

2
‖PΩ1 (A1 − U1V

T
1 )‖2F +

λ

2
(‖U1‖2F + ‖V1‖2F )︸����������������������������������������������������︷︷����������������������������������������������������︸

network completion on A1

+
1

2
‖PΩ2 (A2 − U2V

T
2 )‖2F +

λ

2
(‖U2‖2F + ‖V2‖2F )︸����������������������������������������������������︷︷����������������������������������������������������︸

network completion on A2

(2)
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where the operator PΩ1 projects the value to the observed set Ω1 of A1, e.g., PΩ1 ((U1V
T
1 ) (i, j )) =

(U1V
T
1 ) (i, j ) for any (i, j ) ∈ Ω1, otherwise 0; and operator PΩ2 is defined similarly.

3 PROPOSED OPTIMIZATION FORMULATION

In this section, we present the proposed optimization formulation to solve Problem 1. First, we
present how to formulate the alignment task in the form of two complete networks. A key con-
tribution here is that we prove that the low-rank structure of the complete networks guarantees
a low-rank structure of the alignment matrix. Then we present how to leverage the alignment
matrix to infer missing edges across networks, followed by the overall optimization formulation.

3.1 Network Completion Helps Network Alignment

By performing the network completion on both incomplete networks, the structure of the underly-
ing networks could be recovered so that we can perform the alignment task across higher-quality
networks. We use the factorization-based network completion (i.e., Equation (2)) and denote these
two complete networks by A∗1 = U1V

T
1 and A∗2 = U2V

T
2 , where Ui and Vi (i = 1, 2) are the factoriza-

tion matrices of rank-r. We adopt Equation (1) to perform the network alignment task. Note that
in general, we cannot guarantee the recovered adjacency matrices (A∗1 and A∗2) to be symmetric
because V1 (V2) may not be identical to U1 (U2). This leads to a slightly different objective function
from Equation (1) to align directed networks. Specifically, based on the topology consistency (i.e.,

small [Ŝ(a,x ) − Ŝ(b,y)]2A1 (a,b)A2 (x ,y) in two directed networks), the optimization problem is
formulated as follows:

min
ŝ

α ŝT (D̂ − A∗1 ⊗ A∗2)ŝ + (1 − α )‖D̂
1
2 (ŝ − h)‖2F (3)

where D̂ = D1⊗D2+D̂1⊗D̂2

2 , D1 = diag(U1V
T
1 11), and D̂1 = diag(1T

1 U1V
T
1 ) are the outdegree matrix

and indegree matrix of A∗1, respectively. D2 and D̂2 are defined in a similar way.

However, directly solving the above problem requires at leastO (n2) time complexity, even with
approximation. To address this issue, we give the following lemma, which states the alignment ma-
trix S under the topology consistency (i.e., Equation (3)) intrinsically consists of a low-rank structure,
thanks to the low-rank structure of two complete adjacency matrices.

Lemma 1 [Low-Rank Structure of the Alignment Matrix S]. Let ŝ be the solution of Equa-

tion (3) where A∗1 = U1V
T
1 and A∗2 = U2V

T
2 are two complete rank-r adjacency matrices. Let the align-

ment matrix S be the scaled similarity matrix S = mat(D̂ŝ) and H be the prior similarity matrix, then

if α < 0.5, the alignment matrix can be expressed as S = αU2MU1 + (1 − α )H where M is an r2 × r1
matrix and r1, ˜r2 are the ranks of A∗1 and A∗2, respectively.

Proof. Followed by Equation (3), the closed-form solution of similarity matrix Ŝ can be com-
puted by using Woodbury matrix identity [31] as below

ŝ = (1 − α )D̂−1h + α (1 − α )D̂−1UΛ−1VT D̂−1h (4)

where U = U1 ⊗ U2, V = V1 ⊗ V2, Λ = I − αVT D̂−1U.
First, we rewrite Λ−1 as follows. Since for any twomatrices X,Y, the eigenvalues of their product

satisfies eig(XY) = eig(YX) [31], we obtain

|eig(αVT D̂−1U) | = |eig(αUVT D̂−1) |
≤ |eig(2αUVT (D1 ⊗ D2)−1) |
= 2α |eig((U1V

T
1 D−11 ) ⊗ (U2V

T
2 D−12 )) |

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 4, Article 38. Publication date: May 2020.
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Here, the term U1V
T
1 D−11 represents a weighted directed network whose adjacency matrix has

eigenvalues within (−1, 1), so as the term U2V
T
2 D−12 . Thus, if α < 0.5, according to the spectrum

property of Kronecker product, we have:

2α |eig((U1V
T
1 D−11 ) ⊗ (U2V

T
2 D−12 )) | < 1

Then, we can use Neumann expansion on Λ−1 as:

Λ−1 =
∞∑

k=0

(2α )k [VT (2D̂)−1U]k (5)

Next, we rewrite (2D̂)−1 as follows. Denote D̄1 = D1 + D̂1 and D̄2 = D2 + D̂2, we have:

(2D̂)−1 = (D1 ⊗ D2 + D̂1 ⊗ D̂2)−1 = {(D̄1 ⊗ D̄2)[I − (D̄−11 ⊗ D̄−12 ) (D1 ⊗ D̂2 + D̂1 ⊗ D2)]}−1

= [I − (D̄−11 ⊗ D̄−12 ) (D1 ⊗ D̂2 + D̂1 ⊗ D2)]−1 (D̄−11 ⊗ D̄−12 )

=

∞∑
j=0

[(D̄−11 D1) ⊗ (D̄−12 D̂2) + (D̄−11 D̂1) ⊗ (D̄−12 D2)]j (D̄−11 ⊗ D̄−12 )

=

∞∑
j=0

j∑
i=0

(
j

i

)
[(D̄−11 D1)i (D̄−11 D̂1) j−i D̄−11 ] ⊗ [(D̄−12 D̂2)i (D̄−12 D2) j−i D̄−12 ]

By substituting the above equation into Equation (5), the matrix Λ−1 can be derived as:

Λ−1 =
∞∑

k=0

∞∑
j=0

j∑
i=0

(2α )k

(
j

i

)k

[VT
1 (D̄−11 D1)i (D̄−11 D̂1) j−i D̄−11 U1]

k ⊗ [VT
2 (D̄−12 D̂2)i (D̄−12 D2) j−i D̄−12 U2]

k

(6)

Denote s = D̂ŝ and ĥ = D̂−1h. Armed with the Kronecker product property vec(ABC) = (CT ⊗
A)vec(B), by substituting Equation (6) into Equation (4), we obtain the alignment matrix S =

mat(D̂ŝ) as:
S = αU2MUT

1 + (1 − α )H (7)

where M is an r2 × r1 matrix and is computed by:

M = (1 − α )
∞∑

k=0

∞∑
j=0

j∑
i=0

2kαk

(
j

i

)k

[VT
2 (D̄−12 D̂2)i (D̄−12 D2) j−i D̄−12 U2]

k VT
2 ĤV1[U

T
1 (D̄−11 D1)i (D̄−11 D̂1) j−i D̄−11 V1]

k

(8)
�

Remarks. Equation (7) suggests that the alignment matrix S consists of two parts, including a low-
rank structure and an additive term H to reflect the prior knowledge and is a convex combination
of these two parts. Such a convex optimization follows Equation (3) where a regularization term
is added to minimize the inconsistency between the alignment result and the prior information.
Note that other types of regularization in Equation (3) can lead to more complex combinations
with the prior knowledge which may utilize both the reliable and the unreliable prior information
in a better way. However, we only consider Equations (3) and (7) in this article and leave the more
complex combinations to future works.

In practice, the prior knowledge matrix H is either low-rank (e.g., a rank-one uniformmatrix) or
very sparse. Having this in mind, we will mainly focus on how to learn the true low-rank structure
part of S (i.e., U2MU1) from the input incomplete networks. This naturally leads to the following
effective strategy. First, we temporarily treat the low-rank structure part as the alignment matrix
to be solved in the optimization problems (i.e., S ≈ U2MU1). After U2,M,U1 are obtained, we can
then calibrate the result by averaging between the learned S and the prior knowledge H to further
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Fig. 2. Network completion via the alignment.

emphasize the importance of the prior knowledge, i.e., S← (1 − α )H + αS. As we will show in the
next section, a direct benefit of this strategy is that we can reduce the overall complexity (for both
space and time cost) to be linear.

To take advantages of the low-rank structure of S under the above strategy, instead of minimiz-

ing Equation (3) regarding the similarity matrix Ŝ, we alternatively optimize the topology consis-
tency on the low-rank structure of alignment matrix S = U2MU1 without the second regularization

term, i.e., minimizing sT (D̂ − A∗1 ⊗ A∗2)s. Given A∗1 = U1V
T
1 , A∗2 = U2V

T
2 , by using the properties

vec(A)T vec(B) = Tr(AT B) and vec(ABC) = (CT ⊗ A)vec(B), network alignment across the com-
plete networks can be formulated as minimizing the following objective function:

J2 (U1,V1,U2,V2,M) =
γ

2
sT vec(D2SD1 + D̂2SD̂1) − γ sT vec(U2V

T
2 SV1U

T
1 )

=
γ

2
Tr(D2U2MUT

1 D1U1M
T UT

2 + D̂2U2MUT
1 D̂1U1M

T UT
2 )︸�������������������������������������������������������������������︷︷�������������������������������������������������������������������︸

alignment across complete networks

− γTr(U2V
T
2 U2MUT

1 V1U
T
1 U1M

T UT
2 )︸���������������������������������������︷︷���������������������������������������︸

alignment across complete networks

(9)

3.2 Network Alignment Helps Network Completion

Despite the effectiveness of the factorization-based network completion methods (i.e., Equa-
tion (2)), in some applications, the information of a single network alone might be insufficient to
correctly infer the missing edges. Meanwhile, the alignment across the two networks may provide
extra hints of how to infer the missing edges. To be specific, since the aligned nodes are likely to
share similar connectivity patterns, the observed existing edges in one network could potentially
help recover the missing edges in the other network via the alignment matrix. Figure 2 presents an
illustrative example. Here, node-a in G1 and node-x in G2 are aligned together, and the neighbor
of x (say node-y) is aligned with the neighbor of a (e.g., node-b), which is not observed to connect
with a. If we perform the completion solely based on the observed information of G1, we might
probably conclude that the edge between a and b does not exist. However, the facts that (1) a and
x are aligned, (2) b and y are aligned, and (3) there is an edge between x and y might provide an
auxiliary confidence about the existence of the edge between a and b. In general, we can estimate
such auxiliary confidence of the existence of the edge between a and b in G1 as:

A∗1 (a,b) ≈
n2∑
x,y

S(a,x )S(b,y)A2 (x ,y) = (ST A2S) (a,b) (10)

where S = U2MUT
1 is the alignment matrix learned from the topology consistency.
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In our experiments, we find that such auxiliary confidence is most powerful to estimate the
existence/absence of an edge (a,b) when such an edge itself is not observed in G1 (i.e.,(a,b) ∈ Ω̄1).
Mathematically, this can be formulated as the following objective function:

J3 (U1,V1,U2,V2,M) =
β

2
‖PΩ̄1

(U1V
T
1 − U1M

T UT
2 A2U2MUT

1 )‖2F︸����������������������������������������������︷︷����������������������������������������������︸
completion of G1 based on the observed edges in G2

+
β

2
‖PΩ̄2

(U2V
T
2 − U2MUT

1 A1U1M
T UT

2 )‖2F︸������������������������������������������������︷︷������������������������������������������������︸
completion of G2 based on the observed edges in G1

(11)

where Ω̄1 and Ω̄2 are the unobserved set of A1 and A2.

3.3 Overall Objective Function

We impose the nonnegativity constraints on all the variables U1,V1,U2,V2,M to guarantee that all
the entries in matrices A∗1,A

∗
2, S to be nonnegative. Combining Equations (2), (9), and (11) together,

the overall optimization problem is formulated as:

min
U1,V1,U2,V2,M

J (U1,V1,U2,V2,M) = J1 + J2 + J3

s.t U1,U2,V1,V2,M ≥ 0 (12)

4 PROPOSED OPTIMIZATION ALGORITHM

In this section, we first present the proposed algorithm to solve the optimization problem in Equa-
tion (12). Then, we analyze the proposed algorithm in terms of the correctness, the convergence
and the complexity.

4.1 Optimization Algorithm

Since the overall objective function Equation (12) is not jointly convex, we optimize it by block
coordinate descent. That is, the objective function is alternatively minimized with respect to one
variable group (e.g., U1) while fixing the others once at a time. For the sake of conciseness, we
only show the minimization procedures over U1 and M in this section. Other variables such as
V1,U2,V2 can be solved in a similar way and we put the details in Appendix A.

First, we show the update algorithm over U1. The gradient of Equation (2) with respect to U1 is
computed by:

∂J1
∂U1

= X1 − Y1 (13)

where

X1 = [PΩ1 � (U1V
T
1 )]V1 + λU1

Y1 = (PΩ1 � A1)V1

and PΩ1 (i, j ) = 1 for (i, j ) ∈ Ω1, otherwise PΩ1 (i, j ) = 0.

As for Equation (9), note that D1 = diag(U1V
T
1 11) and D̂1 = diag(1T

1 U1V
T
1 ) are also in terms of

U1, thus the partial gradient is computed by:

∂J2
∂U1

= X2 − Y2 (14)

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 4, Article 38. Publication date: May 2020.



38:10 S. Zhang et al.

where

X2 =
γ

2
[(U1M

T UT
2 D2U2M) � U1]1r11

T
1 V1 +

γ

2
111

T
r1
[(MT UT

2 D̂2U2MUT
1 ) � UT

1 ]V1

+ γ (D1U1M
T UT

2 D2U2M + D̂1U1M
T UT

2 D̂2U2M)

Y2 = γV1U
T
1 U1M

T UT
2 U2V

T
2 U2M + γU1M

T UT
2 U2V

T
2 U2MUT

1 V1 + γU1V
T
1 U1M

T UT
2 V2U

T
2 U2M

And the gradient of Equation (11) over U1 is

∂J3
∂U1

= X3 − Y3 (15)

where

X3 = 2β[PΩ̄1
� (U1M

T UT
2 A2U2MUT

1 )]U1M
T UT

2 A2U2M + β[PΩ̄1
� (U1V

T
1 )]V1

+ 2βA1U1M
T UT

2 [PΩ̄2
� (U2MUT

1 A1U1M
T UT

2 )]U2M

Y3 = β[PΩ̄1
� (U1M

T UT
2 A2U2MUT

1 )]V1 + β[PΩ̄1
� (U1V

T
1 + V1U

T
1 )]U1M

T UT
2 A2U2M

+ βA1U1M
T UT

2 [PΩ̄2
� (U2V

T
2 + V2U

T
2 )]U2M

and matrix PΩ̄2
(i, j ) = 1 for any (i, j ) � Ω2.

A fixed-point solution of ∂ J
∂U1
= 0 under the non-negativity constraint of U1 leads to the follow-

ing multiplicative update rule:

U1 (p,q) ← U1 (p,q) 4

√
Y1 (p,q) + Y2 (p,q) + Y3 (p,q)

X1 (p,q) + X2 (p,q) + X3 (p,q)
(16)

Second, the optimization algorithm over M is given as below. The gradient of Equation (9) w.r.t
M can be derived as:

∂J2
M
= X4 − Y4 (17)

where

X4 = γUT
2 D2U2MUT

1 D1U1 + γUT
2 D̂2U2MUT

1 D̂1U1

Y4 = γUT
2 U2V

T
2 U2MUT

1 V1U
T
1 U1 + γUT

2 V2U
T
2 U2MUT

1 U1V
T
1 U1

And the gradient of Equation (11) w.r.t M is computed by:

∂J3
M
= X5 − Y5 (18)

where

X5 = βUT
2 A2U2MUT

1 [PΩ̄1
� (U1V

T
1 + V1U

T
1 )]U1

+ βUT
2 [PΩ̄2

� (U2V
T
2 + V2U

T
2 )]U2MUT

1 UT
1 A1U1

Y5 = 2βUT
2 A2U2MUT

1 [PΩ̄1
� (U1M

T UT
2 A2U2MUT

1 )]U1

+ 2βUT
2 [PΩ̄2

� (U2MUT
1 A1U1M

T UT
2 )]U2MUT

1 A1U1

Consequently, the fixed-point solution of ∂ J
∂M
= 0 under the nonnegative constraint leads to the

following update rule:

M(p,q) ← M(p,q) 4

√
Y4 (p,q) + Y5 (p,q)

X4 (p,q) + X5 (p,q)
(19)

Initialization. Since the optimization problem in Equation (12) is not a joint convex problem, a
good initialization of each variable group could play an important role of obtaining a good final
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ALGORITHM 1: iNeAt: Incomplete Network Alignment.

Input: (1) the adjacency matrices A1, A2 of the incomplete networks G1, G2,(2) the optional
prior alignment preference H, (3) the rank sizes r1, r2,(3) the parameters α , λ,γ , β .and (4) the
maximum iteration number tmax.

Output: (1) the alignment matrix S between G1 and G2, and (2) the complete adjacency matrices
A∗1,A

∗
2.

1: Initialize U1,V1,U2,V2 by Equation (20), M by Equation (21), t = 1;
2: while not converge and t ≤ tmax do

3: Update U1 by Equation (16);
4: Update V1 by Equation (27);
5: Update U2 by Equation (28);
6: Update V2 by Equation (29);
7: Update M by Equation (19);
8: Set t ← t + 1;
9: end while

10: A∗1 = U1V
T
1 and A∗2 = U2V

T
2 .

11: S = αU2MUT
1 + (1 − α )H.

solution. For U1 and U2, we initialize them by solving the symmetric nonnegative matrix factoriza-
tion of A1 and A2, e.g., minimizing ‖A1 − U1U

T
1 ‖2F over U1 ≥ 0. Same as [9], we use the following

multiplicative update rule to obtain the solution:

U1 ← U1 �
⎡
⎢
⎢
⎢
⎢
⎣

1 − ϵ + ϵ A1U1

U1 (UT
1 U1)

⎤
⎥
⎥
⎥
⎥
⎦

(20)

where ϵ is suggested to be set to 0.5 in practice. Then we set V1 = U1 due to the symmetry of A1

and initialize U2,V2 similarly. As for the variable M, given the initial U1 = V1,U2 = V2, we can
simplify the computation of Equation (8) and initialize M as:

M = (1 − α )
K∑

k=0

αk+1 (UT
2 D−12 U2)k UT

2 D−12 HD−11 U1 (UT
1 D−11 U1)k (21)

where the constant K can be set to a relatively large number, e.g., 100.
Overall, the proposed algorithm is summarized in Algorithm 1. First, it initializes each variable

as line 1. Then, the algorithm alternatively updates each variable group one by one (line 3–7) until
it converges or the maximum iteration number tmax is reached. The algorithm finally outputs the
complete networks A∗1,A

∗
2 (line 10), and the alignment matrix S as line 11.

4.2 Proof and Analysis

In this subsection, we provide the theoretical analysis of the updating rule of U1. We first prove
that the fixed-point solution of Equation (16) satisfies the Karush–Kuhn–Tucker (KKT) condition.
Then we analyze its convergence, as well as its time and space complexity. The analyses and proofs
for other variables are similar and are omitted in the article for brevity.

Theorem 1 [Correctness of Eqation (16)]. At convergence, the fixed-point solution of Equa-

tion (16) satisfies the KKT condition.

Proof. Let Σ ∈ Rn1×r1 be the Lagrangian multiplier and the Lagrangian function of Equa-
tion (12) be:

L(U1) = J (U1) − Tr(ΣT U1)
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By setting the gradient of L w.r.t U1 to 0, we obtain:

Σ = X1 + X2 + X3 − Y1 − Y2 − Y3 (22)

The KKT complementary condition for the nonnegativity of U1 gives:

(X1 + X2 + X3 − Y1 − Y2 − Y3) � U1 = 0 (23)

According to the updating rule Equation (16), at convergence, we have for ∀p,q,

U1 (p,q) = U1 (p,q) 4

√
Y1 + Y2 + Y3

X1 + X2 + X3
(24)

which is equivalent to:

(X1 + X2 + X3 − Y1 − Y2 − Y3) � (U1)4 = 0 (25)

Equations (23) and (25) are equivalent, so at convergence, Equation (16) satisfies the KKT condition.
�

Then, we show the convergence of updating U1 under Equation (16). First, the following lemma
gives the auxiliary function for the objective function Equation (12) w.r.t U1.

Lemma 2 [Auxiliary function of J (U1)]. Let J (U1) denote all the terms in Equation (12) that

contains U1, then the following function Z (U1, Ũ1)

Z (U1, Ũ1) =
1

4

∑
p,q

[(PΩ1 � (Ũ1V
T
1 ))V1](p,q)

U4
1 (p,q) + Ũ4

1 (p,q)

Ũ3
1 (p,q)︸�������������������������������������������������������������︷︷�������������������������������������������������������������︸

T ′1

−
∑
p,q

[(PΩ1 � A1)V1](p,q)Ũ1 (p,q) (1 + log
U1 (p,q)

Ũ1 (p,q)
)

︸���������������������������������������������������������������︷︷���������������������������������������������������������������︸
T ′2

+
λ

4

∑
p,q

Ũ1 (p,q)
U4

1 (p,q) + Ũ4
1 (p,q)

Ũ3
1 (p,q)︸��������������������������������������︷︷��������������������������������������︸

T ′3

+
γ

12

∑
p,q

Z1 (p,q)
3U4

1 (p,q) + Ũ4
1 (p,q)

Ũ3
1 (p,q)︸�����������������������������������������︷︷�����������������������������������������︸

T ′4

+ γT ′5 +
β

4

∑
p,q

[(PΩ̄1
� (Ũ1V

T
1 ))V1](p,q)

U4
1 (p,q) + Ũ4

1 (p,q)

Ũ3
1 (p,q)︸�������������������������������������������������������������︷︷�������������������������������������������������������������︸

T ′6

+
β

2

∑
p,q

Z2 (p,q)
U4

1 (p,q)

Ũ3
1 (p,q)︸�����������������������︷︷�����������������������︸

T ′7

+
β

2

∑
p,q

Z3 (p,q)
U4

1 (p,q)

Ũ3
1 (p,q)︸�����������������������︷︷�����������������������︸

T ′8

+βT ′9 + βT
′
10
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where

Z1 =
1

2
[(Ũ1M

T UT
2 D2U2M) � Ũ1]1r11

T
1 V1 +

1

2
111

T
r1
[(MT UT

2 D̂2U2MŨ1) � Ũ1]V1

+ diag(Ũ1V
T
1 11)Ũ1M

T UT
2 D2U2M + diag(V1U

T
1 11)Ũ1M

T UT
2 D̂2U2M

Z2 = [PΩ̄1
� (Ũ1M

T UT
2 A2U2MŨT

1 )]Ũ1M
T UT

2 A2U2M

Z3 = A1Ũ1M
T UT

2 [PΩ̄2
� (U2MŨT

1 A1Ũ1M
T UT

2 ]U2M

T ′5 = −
∑

o,p,q,r,s

(MT UT
2 U2V

T
2 U2M) (o,q)V1 (p, r )Ũ1 (s, r )Ũ1 (s,o) × Ũ1 (p,q)

(1 + log
U1 (p,q)U1 (s, r )U1 (s,o)

Ũ1 (p,q)Ũ1 (s, r )Ũ1 (s,o)
)

T ′9 = −
∑

o,p,q,r,s

PΩ̄1
(p,o)V1 (o,q) (MT UT

2 A2U2M) (s, r )Ũ1 (o, s ) × Ũ1 (p, r )Ũ1 (p,q)

(1 + log
U1 (p,q)U1 (o, s )U1 (p, r )

Ũ1 (p,q)Ũ1 (o, s )Ũ1 (p, r )
)

T ′10 = −
∑

o,p,q,r,s,t

PΩ̄2
(p,q) (U2V

T
2 ) (p,q) (U2M) (p, r )Ũ1 (s, r )A1 (s, t )Ũ1 (t ,o) (MT UT

2 ) (o,q)

× (1 + log
U1 (s, r )U1 (t ,o)

Ũ1 (s, r )Ũ1 (t ,o)
)

is an auxiliary function of J (U1) for any U1, Ũ1 ≥ 0 after removing some constant terms such that

Z (U1, Ũ1) ≥ J (U1) and Z (U1,U1) = J (U1). And it is also a convex function w.r.t U1 and its global

minima is

U1 (p,q) = Ũ1 (p,q) 4

√
Ỹ1 (p,q) + Ỹ2 (p,q) + Ỹ3 (p,q)

X̃1 (p,q) + X̃2 (p,q) + X̃3 (p,q)
(26)

where X̃i , Ỹi , i = 1, 2, 3 are all in terms of Ũ1 while sharing the same formulas with Xi ,Yi , i = 1, 2, 3.

Proof. Refer the proof to Appendix B. �

Next, we show the convergence of updating U1 by Equation (16) in the following theorem.

Theorem 2 [Convergence of Eqation (16)]. When other variables are fixed, under the updat-

ing rule Equation (16), the objective function w.r.t U1 monotonically non-increases.

Proof. Denote U1 at iteration t as U
(t )
1 . According to Lemma 2, the global minima U

(t+1)
1 of the

auxiliary function is achieved by minimizing the function Z (U1,U
(t )
1 ) over U1, which leads to:

Z (U(t+1)
1 ,U

(t )
1 ) ≤ Z (U(t )

1 ,U
(t )
1 ) = J (U(t )

1 )

Besides, based on Lemma 2, J (U(t+1)
1 ) ≤ Z (U(t+1)

1 ,U
(t )
1 ) and therefore J (U(t+1)

1 ) ≤ J (U(t )
1 ) which

means the objective function w.r.t. U1 is monotonically non-increasing. �

The time and space complexity of each updating iteration in Algorithm 1 are summarized in
Lemma 3. Note that by exploring the low-rank structure of the alignment matrix, the time com-
plexity is reduced to linear.

Lemma 3 [Complexity of iNeAt]. The time complexity of each update iteration in Algorithm 1

is O (nr 2 +min{|Ω̄ |, |Ω |}r ), and the space complexity is O (nr +min{|Ω̄ |, |Ω |}) where n, |Ω |, |Ω̄ | are
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Table 2. Statistics of Datasets

Category Network # of Nodes # of Edges

Collaboration Gr-Qc 5,241 14,484
Infrastructure Oregon 7,352 15,665

Social Google+ 23,628 39,194
Social Youtube 1,134,890 2,987,624

Communication Gordian Channel 1 1,000 41,191
Communication Gordian Channel 2 1,003 4,627

the number of nodes, the number of observed and unobserved entries in two incomplete networks

respectively. And r denotes the rank of networks.

Proof. For time complexity, calculating the term X1,Y1,X3, and Y3 in each iteration has
O (nr 2 +mr +min{|Ω̄ |, |Ω |}r ) time complexity and O (m + nr ) space complexity. Note that PΩ1 +

PΩ̄1
= 1n1×n1 . In this way, for example, X1 can be computed from either PΩ1 or PΩ̄1

. Thus, we use

min{|Ω̄ |, |Ω |} for the complexity analysis. For terms X2 and Y2, it takesO (nr 2) time complexity and
O (nr ) space complexity. For other variables V1,U2,V2, and M, since the analyses are similar, we
omit the analyses for brevity. Overall, we can obtain the time and space complexity in the above
lemma. �

We remark that the linear complexity is obtained in each updating iteration of Algorithm 1. If
we carry out line 10–11 in a straightforward way, it will incur an additionalO (n2) cost due to the
multiplications between low-rank matrices (e.g., U1V

T
1 and U2MU1) as well as the need to store the

potentially dense matrices (e.g., A∗1, S). To address this issue, we can store the resulting A∗1, A∗2, and
S in a compact way by the corresponding low-rank matrices. Then when we access a certain entry
of the matrix (e.g., A∗1), we perform the vector-vector inner product between the corresponding
rows of U1 and V1.

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results of the proposed algorithm iNeAt. We evaluate
our algorithm in the following two aspects:

—Effectiveness: How accurate is our algorithm for aligning incomplete networks? How effec-
tive is our algorithm to recover missing edges by leveraging the alignment result?

—Efficiency: How fast and scalable is our algorithm?

5.1 Experimental Setup

Datasets. We evaluate the proposed algorithm on three types of real-world networks, including
the collaboration network, infrastructure network and social networks. The statistics of all the
datasets are summarized in Table 2.

—Collaboration Network: We use the collaboration network in the general relativity and quan-
tum cosmology (Gr-Qc) area from the e-print arXiv [18]. In the network, each node repre-
sents an author and there exists an edge if two authors have co-authored at least one paper.

— Infrastructure Network: This dataset is a network of Autonomous Systems (AS) inferred from
Oregon route-view [18]. In the network, nodes are the routers, and edges represent the
peering information among routers.
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—Social Network: We use the social network collected from Google+ [19]. In the network,
nodes are the users and an edge denotes that one user has the other user in his/her cir-
cles. We also use the Youtube network [39] where nodes are the Youtube users and edges
represent the friendship among users.

—Gordian Networks: This dataset contains communication networks via different channels.
In particular, we aim to align the communication networks via phone (Channel 1) and e-
mails (Channel 2). Each node in both networks represents a person. An edge in Channel
1 network indicates two people contact each other through phone whereas each edge in
Channel 2 network represents two people send an email. There are 1,000 common nodes in
both networks that are used as the alignment ground-truth.

Based on these datasets except Gordian dataset, we construct four pairs of incomplete networks
for alignment evaluations by the following steps. For each dataset, we first generate a random
permutation matrix and use it to construct the second (permuted) network. Then, in each of these
two networks, we remove 0.1%, 0.5%, 1%, 5%, 10%, 15%, 20% of the total number of edges uniformly
at random to generate the unobserved edges. For the Gordian dataset (Channel 1 and Channel 2),
we first compute the edge betweenness score for each edge, which is sum of the fraction of all
pairs of shortest paths through the edge [6]. Then we normalize the edge betweenness scores such
that they sum to 1, i.e.,

∑
(u,v )∈G1 sb ((u,v )) = 1 where sb ((u,v )) is the edge betweenness score of

edge (u,v ) and then we use the normalized scores as the probabilities to remove the corresponding
edge as an unobserved edge. We run our algorithm and other comparison methods in all the pairs
of incomplete networks.
Comparison Methods.

—Alignment. To evaluate the alignment performance of our proposed algorithm iNeAt3, we
compare it with the following existing network alignment algorithms, including (1) Ne-

tAlign [3], (2) IsoRank [34], and (3) FINAL-P+ [43]. Besides, in order to validate whether
alignment and imputation are mutually beneficial from each other, we use the low-rank
networks completed solely by Equation (2) as the input networks for FINAL-P+. We name
this method as FINAL-IMP. We also show the alignment results by the degree similarity
(DegSim), which is also used as the prior knowledge matrix H of iNeAt.

—Completion. To evaluate the completion performance, we compare our algorithm with the
existing matrix completion methods which are for the single network completion task, in-
cluding (1) a matrix factorization method based on Equation (2) (NMF-IMP), (2) an accel-
erated proximal gradient based nuclear norm minimization method (NNLS) [36], and (3) a
Riemannian trust-region based matrix completion method (RTRMC) [5].

Machines and Repeatability. All experiments are performed on a Windows machine with four
3.6 GHz Intel Cores and 32 GB RAM. The algorithms are programmedwithMATLAB using a single
thread.

5.2 Effectiveness Analysis

We first evaluate the alignment accuracy with different numbers of unobserved edges in the in-
complete networks. We use a heuristic greedy matching algorithm as the post processing step
on the alignment matrix to obtain the one-to-one mapping matrix between two input networks,
then we compute the alignment accuracy with respect to the ground-truth (i.e., the permutation
matrix). The results are summarized in Figure 3. We have the following observations. First, we
observe that iNeAt outperforms the baseline methods with different numbers of unobserved

3The code can be found in http://www.public.asu.edu/∼szhan172/ineat.zip.
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Fig. 3. (Higher is better.) Alignment accuracy vs. the number of unobserved edges in the networks.

Fig. 4. (Higher is better.) Recovery rate vs. the number of unobserved edges in the networks.

edges. To be specific, our method achieves an up to 30% alignment accuracy improvement, com-
pared with the baseline methods that directly align across two incomplete networks (i.e., NetAlign,
IsoRank, and FINAL-P+). Second, the degree similarity (i.e., H) alone gives a very poor performance
on the alignment accuracy, whereas by averaging H and U2MU1, the alignment matrix (i.e., results
of iNeAt) provides a much better accuracy. This verifies the effectiveness of our strategy combin-
ing the low-rank structure of alignment matrix and prior knowledge H. Third, the accuracy of iN-
eAt is higher than that of FINAL-IMP, which indicates that solving the alignment and imputation
tasks simultaneously indeed achieves a better performance than the completion-then-alignment

strategy. Specifically, as Figure 3(a) and 3(b) show, in some cases, the pure completion may intro-
duce too much noise in the incomplete networks and hence lead to an even worse alignment result
than that of other alignment baseline methods (those without performing network completion at
all).

Second, to evaluate the effectiveness of iNeAt for network completion, we assume the missing
edges are recovered if the corresponding entries of the completed adjacency matrix are larger
than a certain threshold (e.g., set to be 0.3 in our article). Then, we calculate the recovery rate
over the total number of missing edges. In addition, as the algorithms of network completion may
achieve different performance with different initializations, we repeat the algorithms for 20 runs
and present the mean edge recovery rates and variances. The results are shown in Figure 4. As
we can see, iNeAt has a higher recovery rate than other baseline methods, indicating that the
completion performance is indeed improved by leveraging the alignment across two networks.
Besides, the network completion performance of our algorithms are not sensitive to the algorithm
initializations. For NNLS and RTRMC baseline methods, we did not observe any variances.
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Fig. 5. Parameter study on collaboration networks with 5% unobserved edges: study the effect of the pa-

rameters γ , β , rank r and α in terms of alignment accuracy.

Fig. 6. Quality-speed results on the collaboration network with 10% unobserved edges.

Third, we study how different parameters affect the alignment accuracy. In our experiments, we
mainly study three parameters, including (1) γ which controls the importance of alignment task,
(2) β which controls the importance of cross-network completion task, and (3) r which is the rank
of the complete network. The results are shown in Figure 5. As we can see, the alignment accuracy
is stable within a wide range of parameter settings. Besides, Figure 5(c) suggests that a relatively
small rank might be sufficient to achieve a satisfactory alignment performance. We also observe
in Figure 5(d) that (1) by leveraging the combination of both U2MUT

1 and the prior information
H can significantly improve the alignment performance, and (2) α = 0.5 leads to better results in
most cases.

5.3 Efficiency Analysis

Quality-Speed Trade-off. In order to evaluate the trade-off between the effectiveness and effi-
ciency of our method, we measure the quality from two aspects, including the quality of alignment
and that of network completion. Here, we show the trade-off results on the collaboration network
with 10% unobserved edges in Figure 6. As we can see in Figure 6(a), the running time of our
method iNeAt is slightly higher than IsoRank and FINAL-P+, but it achieves a 15%–25% alignment
accuracy improvement across the incomplete networks. Meanwhile, our method is much faster
than NetAlign.

On the other hand, to evaluate the quality of network completion, note that the running time
is the time for completing two incomplete networks. As Figure 6(b) shows, iNeAt obtains a better
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Fig. 7. Running time vs. the number of nodes in the networks.

recovery rate and less running time. To be specific, compared with NMF-IMP, iNeAt can recover
10% more missing edges with a similar running time. Besides, iNeAt achieves a slightly better
recovery rate and a much faster speed than NNLS and RTRMC.

Scalability. Weuse the largest dataset (Youtube) to study the scalability of our proposedmethod
iNeAt (i.e., running time vs. size of the network). Here, we use the same method to extract and
construct several pairs of incomplete subgraphs with different sizes from the entire network. As
we can see from Figure 7, the running time of the algorithm is linear w.r.t the number of nodes in
the networks which is consistent with our time complexity analysis.

6 RELATED WORK

Network Alignment. In general, network alignment has two categories, i.e., local alignment and
global alignment. Among others, local network alignment aims to uncover the alignment among
small regions across multiple networks, such as motifs and small subgraphs. Some recent works
include [4, 26, 30]. Nevertheless, local network alignment might be too restrictive to effectively
find the node correspondence. On the other side, many global network alignment algorithms that
targets to find node alignment, are based on the topology consistency. For example, one early well-
known approach IsoRank computes the cross-network pairwise topology similarities by propagat-
ing the similarities of their neighboring node pairs and it is shown that this can be formulated
as a random-walk propagation procedure in the Kronecker product graph [34]. In addition, Iso-

RankN [20] extends the original IsoRank algorithm by using PageRank-Nibble [1] to align multiple
networks. BigAlign [16] and UMA [42] both assume that one network is a noisy permutation of
the other network, whereas [42] is generalized to align multiple networks by adding the transitiv-

ity constraints. NetAlign formulates the network alignment problem as an optimization problem
to maximize the number of aligned neighboring node pairs [3] and solve it based on a belief-
propagation heuristic.

More recently, Liu et al. propose an algorithm that learns the embedding of the nodes while
making the aligned nodes closed to each other in the embedding space [23]. Then the distances
among the embedding vectors of nodes are used tomeasure the probabilities that nodes are aligned.
Another recent embedding-based alignment method for attributed networks is proposed in [14].
However, these embedding-based methods implicitly suffer from the space disparity. To address
this issue, Du et al. propose an embedding-based method MrMine that forces the embedding vec-
tors of different objects of the networks at different resolutions to lie in the same space [11]. In
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addition, Zhang et al. propose to mitigate this issue by postprocessing the node embedding vectors
by a non-rigid point-set registration [45]. Moreover, Vijayan et al. proposes MAGNA++ [38] that
simultaneously maximizes the node conservation and edge conservation which are widely used in
bioinformatics. Other network alignment algorithms proposed in the bioinformatics community
include HubAlign [13], Natelie [12], L-GRAAL [25], and the like. However, most of these methods
only assume the global consistency in the network topology and possibly leverage the attribute
information by calculating the attribute similarity matrix as the prior alignment matrix. One po-
tential drawback of these methods is not considering the consistency in the attributes of the net-
works.

Some early works in another relevant topic (i.e., anchor link prediction), which use both struc-
tural information and attribute information to map users across networks, include [15, 40]. A re-
cent work COSNET formulates the local consistency among the attributes of each node and the
global topology consistency, as well as the transitivity property into an energy-based model to
find the alignment across multiple attributed networks [46]. However, these methods are all su-
pervised and require the exact alignment relationships as the training data. On the other side,
Zhang et al. propose an attributed network alignment algorithm by adopting both the topological
and attribute consistency principles [43]. This work formulates these consistency principles into
a convex quadratic problem and propose a fixed-point solution to solve it. Du et al. propose an
efficient solver-based on Krylov subspace to accelerate the algorithm [10]. Chen et al. [8] propose
a community-based alignment method that can not only leverage the node attributes, but also
find both the node-level alignment and the community-level alignment. However, most, if not all,
of the existing methods implicitly assume that the input networks are complete without missing
edges.

Network Completion. On the other side, since the real-world networks are often incomplete,
the network completion task is often the very first step prior to many applications in order to
gain a better performance. Kim et al. propose a network completion method based on expectation
maximization that can add themissing nodes and edges under the assumption that networks follow
the Kronecker graph model [17]. Another work proposed by Masrour et al. decouples the network
completion from transduction so that the node similarity matrix can be efficiently leveraged as the
side information [27]. Soundarajan et al. study to reduce the incompleteness of the input network
by a careful node selection to probe nodes [35]. In addition, inferring the missing edges in the
incomplete network can be considered as an adjacency matrix completion problem, and hence
the network completion problem can be naturally solved by many matrix completion approaches.
Among them, one well-known method is based on singular value thresholding, which iteratively
shrinks the singular values to minimize the nuclear norm [7]. In order to speed up the completion
process, Toh and Yun propose an accelerated proximal gradient algorithm to solve the nuclear
norm regularized linear least squares problem [36]. Besides, by exploiting the geometry of the
low-rank structure constraint, a first-order and second-order Riemannian trust-region approach
is proposed to solve the formulated optimization problem on the Grassmann manifold [5]. [37]
utilizes graph auto-encoder formatrix completion, or specifically for bipartite network completion.
However, all these methods aim to complete a single network once at a time. On the other hand,
there are some recent work to complete multiple aligned networks by tensor completion [22, 24].
Nonetheless, how these input networks are aligned at the first place was not answered in these
work.

Another hot topic related to network completion is the link prediction problem [21]. Miller et al.
propose a Beysian nonparametric latent feature model to predict the links in the relational data
[29]. [28] proposes to use the supervised matrix factorization to obtain the latent features and then
predict links by combining latent features with the explicit node and edge features. Barbieri et al.
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propose a stochastic topic model which can not only predict the links to be recommended, but
also explain why the links are predicted [2]. In [41], Zhang et al. study the link prediction problem
acrossmultiple aligned networks and formulate it as a sparse low-rankmatrix completion problem.
This is different from iNeAt where no alignment are known apriori.

7 CONCLUSION

In the era of big data, the multi-sourced and incomplete characteristics often co-exist in many real
networks. Nonetheless, the state-of-the-arts has been largely addressing them in parallel. In this
article, we propose to jointly address network alignment and network completion so that the two
tasks can mutually benefit from each other. We formulate incomplete network alignment problem
as an optimization problem and propose a multiplicative update algorithm (iNeAt) to solve it.
The proposed algorithm is proved to converge to the KKT fixed point with a linear complexity in
both time and space. To our best knowledge, the proposed iNeAt algorithm is the first network
alignment algorithm with a provable linear complexity. The empirical evaluations demonstrate
the effectiveness and efficiency of the proposed iNeAt algorithm. Specially, it (1) improves the
alignment accuracy by up to 30% over the existing network alignment methods, in the meanwhile
it leads a better imputation outcome; and (2) achieves a good quality-speed balance and scales
linearly w.r.t the number of nodes in the networks. Future work includes extending our algorithm
to handle attributed networks and other ways to leverage the prior knowledge.

APPENDIX

A UPDATE RULE OF V1, U2, V2

Similarly, the gradient of Equation (2) in terms of V1 is computed by ∂ J1
∂V1
= X6 − Y6 where:

X6 = [PΩ1 � (V1U
T
1 )]U1 + λV1

Y6 = (PΩ1 � A1)U1

The partial gradient of Equation (9) w.r.t. V1 is computed by ∂ J2
∂V1
= X7 − Y7 where:

X7 =
γ

2
111

T
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[(MT UT

2 D2U2MUT
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1 ]U1 +
γ

2
[(U1M

T UT
2 D̂2U2M) � U1]1r11

T
1 U1

Y7 = γU1M
T UT

2 V2U
T
2 U2M

And ∂ J3
∂V1

is computed by ∂ J3
∂V1
= X8 − Y8 where:

X8 = β[PΩ̄1
� (V1U

T
1 )]U1

Y8 = β[PΩ̄1
� (U1M

T UT
2 A2U2MUT

1 )]U1

The fixed-point solution of ∂ J
V1
= 0 under the nonnegativity constraint of V1 leads to the follow-

ing multiplicative update rule:

V1 (p,q) ← V1 (p,q) 4

√
Y6 (p,q) + Y7 (p,q) + Y8 (p,q)

X6 (p,q) + X7 (p,q) + X8 (p,q)
(27)
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The gradient of Equation (2) w.r.t. U2 is computed by ∂ J1
∂U2
= X9 − Y9 where:

X9 = [PΩ1 � (U2V
T
2 )]V2 + λU2

Y9 = (PΩ1 � A2)V2

For Equation (9), its gradient over U2 can be derived as ∂ J2
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= X10 − Y10 where:

X10 =
γ

2
[U2MUT

1 D1U1M
T ) � U2]1r21

T
2 V2 +

γ

2
121

T
r2
[(MUT

1 D̂1U1M
T UT

2 ) � UT
2 ]

+ γ (γD2U2MUT
1 D1U1M

T + D̂2U2MUT
1 D̂1U1M

T )

Y10 = γU2MUT
1 U1V

T
1 U1M

T UT
2 V2 + γV2U

T
2 U2MUT

1 U1V
T
1 U1M

T + γU2V
T
2 U2MUT

1 V1U
T
1 U1M

T

The partial gradient of Equation (11) w.r.t. U2 is computed by ∂ J3
∂U2
= X11 − Y11 where:
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In this way, the fixed-point solution of ∂ J
∂U2
= 0 under the nonnegativity constraint of U2 gives the

following multiplicative update rule:

U2 (p,q) ← U2 (p,q) 4

√
Y9 (p,q) + Y10 (p,q) + Y11 (p,q)

X9 (p,q) + X10 (p,q) + X11 (p,q)
(28)

The gradient of Equation (2) w.r.t. V2 is computed by ∂ J1
∂V2
= X12 − Y12 where:

X12 = [PΩ2 � (U2V
T
2 )]U2 + λV2

Y12 = (PΩ2 � A2)U2

The gradient of Equation (9) over V2 is computed by ∂ J2
∂V2
= X13 − Y13 where:
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And the gradient of Equation (11) w.r.t. V2 is
∂ J3
∂V2
= X14 − Y14 where:
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In this way, the fixed-point solution of ∂ J
∂V2
= 0 under the nonnegativity constraint of V2 leads to

the multiplicative update rule as:

V2 (p,q) ← V2 (p,q) 4

√
Y12 (p,q) + Y13 (p,q) + Y14 (p,q)

X12 (p,q) + X13 (p,q) + X14 (p,q)
(29)
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B PROOF OF LEMMA 2

Proof. First, we prove that for any nonnegative U1, Ũ1, we have Z (U1, Ũ1) ≥ J (U1). Recall
that the objective function w.r.t. U1 contains three parts, i.e., J (U1) = J1 (U1) + J2 (U1) + J3 (U1). For
J1 (U1), after removing the constant terms w.r.t. U1, we have:
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Now we prove thatT ′i ≥ Ti for i = 1, . . . , 10 term by term. By the definition of PΩ1 and its sym-

metry, PΩ1 = PT
Ω1
= PΩ1 � PΩ1 . Let U1 (p,q) = Ũ1 (p,q)Q(p,q), ∀p,q, we have:
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where the first and fourth line is due to a2 + b2 ≥ 2ab and the third line is due to the equivalence
by switching t ⇔ q. We can prove T ′6 ≥ T6 in the same way.

Next, by using the inequality z ≥ 1 + log z, ∀z > 0, we can easily prove T ′2 ≥ T2. And similarly,
T ′5 ≥ T5,T

′
9 ≥ T9 and T

′
10 ≥ T10.

For T ′3 , we have T ′3 ≥
λ
2

∑
p,q U2

1 (p,q) = T3.
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To showT ′6 ≥ T6, we first consider the first term ofT6. By denoting X = MT UT
2 D2U2M which is

symmetric, we have:
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Ũ1 (p, r )(VT
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Similarly, by denoting X̂ = MT UT

2 D̂2U2M, we can show that:
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T
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Then by adding Equations (30) and (31) together, we can obtain T6 ≤ T ′6 .

Denote T = MT UT
2 A2U2M, we have:
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Similarly, it can be proved that T ′8 ≥ T8. Then by adding T ′i , i = 1, . . . , 10 together, we have:

Z (U1, Ũ1) =
10∑

i=1

T ′i ≥
10∑

i=1

Ti = J (U1) (32)

Second, we can directly prove Z (U1,U1) = J (U1) by substituting Ũ1 with U1 in all above in-
equalities.

Finally, to prove that the auxiliary function Z (U1, Ũ1) is convex w.r.t. U1, for the sake of brevity,

we briefly show the Hessian matrix of Z (U1, Ũ1) is positive semi-definite. To start with, the deriv-

ative
∂Z (U1,Ũ1 )
∂U1 (p,q ) can be calculated as:

∂Z (U1, Ũ1)

∂U1 (p,q)
= (X̃1 + X̃2 + X̃3) (p,q)

U3
1 (p,q)

Ũ3
1 (p,q)

− (Ỹ1 + Ỹ2 + Ỹ3) (p,q)
Ũ1 (p,q)

U1 (p,q)
(33)

where X̃i , Ỹi , i = 1, 2, 3 are all in terms of Ũ1 while sharing the same formulas with Xi ,Yi , i =
1, 2, 3. For example, X̃1 = [PΩ1 � (Ũ1V

T
1 )]V1 + λŨ1. Then the Hessian matrix w.r.t. U1 is computed

by:

∂2Z (U1, Ũ1)

∂U1 (p,q)∂U1 (r , s )
= δprδqs

⎡
⎢
⎢
⎢
⎢
⎣

3(X̃1 + X̃2 + X̃3) (p,q)
U2

1 (p,q)

Ũ3
1 (p,q)

+ (Ỹ1 + Ỹ2 + Ỹ3) (p,q)
Ũ1 (p,q)

U2
1 (p,q)

⎤
⎥
⎥
⎥
⎥
⎦

(34)

where δpr ,δqs are the Kronecker delta functions, i.e., δpr = 1 ifp = r ; δpr = 0 otherwise. Therefore,

the Hessian matrix �2
U1
Z (U1, Ũ1) is a diagonal matrix with nonnegative elements. As a result, the

Hessian matrix is positive semi-definite, which means the auxiliary function Z (U1, Ũ1) is convex
w.r.t. U1. In this way, the global minima ofZ (U1, Ũ1) is obtained by setting its first-order derivative
(i.e., Equation (33)) to be zero which further leads to the solution consistent with Equation (26).�
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