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Why Incomplete Network Alignment?

= Networks are multi-sourced (Variety)

Network Alignment

L4

Find Someone
Like You

= Networks are often incomplete (Veracity)

— Missing edges in multiple networks

= Q: how to align networks with missing edges?
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How about Completion-Then-Alignment?

= A natural choice

= Completion ideally provides higher-quality networks
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Completion-Then-Alignment: Limitations

= Limitation 1: alignment efficiency

—Many alignment methods have 0(mjn) complexity

# of edges
— Densified networks after completion intensify computation

— Q1: how to make alignment and completion more efficient?

= Limitation 2: alignment accuracy
— Potential introduced noisy links could affect alignment

— Q2: how to complete networks to benefit alignment?
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Prob. Def: Incomplete Network Alignment

= Glven:
— (1) Adjacency matrices A, A, of two incomplete networks
—(2) a prior alignment preference matrix H

= Qutput:
— (1) Alignment matrix S

—(2) Adjacency matrices A7, A5 of the complete networks

: Observed edges
: Recovered edges
= = Alignment
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Preliminaries

= Network Alignment (FINAL, IsoRank)
msin as"(D; @ D, — A; ® A,)s + (1 — a)|ls — h||5

— Intuition: Alignment consistency

— Complexity: 0(mn) or 0(n?) with approximation

= Network Completion (Factorization-Based)

1 2 A
i —_ _ T _ 2 2
o 0in Ny = 5 [Pa, (4n = U VD[ + 5 ANULIE + VLR
1 2 A
t5 P, (4, — U,V3) e T §(||U2||12: AR

within-network completion
— Intuition: low-rank characteristics of real networks
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Roadmap

= Motivation and Background v~

= Q1: Network Completion Helps Alignment
= Q2: Network Alignment Helps Completion
= INEAT: Optimization Algorithm

= Experiments

= Conclusions
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Network Completion Helps Alignment

= Alignment across complete networks
min |/, = as’(D — A} @ A5)s + (1 — a)||Ds — h||5

S

~-A; = U,V A, = U,V are complete adjacency matrices
— Benefit: higher-quality of input networks

= | ow-rank structure of alignment matrix
— Low rank of networks = low rank of alignment matrix
~-S =aU,MU! + (1 — a)H (proof in paper)

I - I

o X rq
— Benefit: an alignment algorithm with a linear complexity
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Network Alignment Helps Completion

= Auxiliary confidence of edge existence

— (1) node-a and node-x are aligned @ ‘i’ T » Gl?/?

I I
—(2) node-b and node-y are aligned },/6 G o9
—(3) node-x and node-y are connected ——

- : Recovered edges
— = : Alignhment

—Infer: a potential edge (a, b)
Ai(a,b) = ) $(a,)S(b,y)A;(x,y) = (STA,5)(a b)
X,y

= Mathematically, we have

min ]z =

u.v.yu,v,m Pﬁl(Ulvrf — UlMTU’gAZUZMU'{)

_I_

o N N

NI

Pﬁz(uzvg - U,MUTA, U MTUY)

cross-network completion
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INEAT: Optimization Algorithm

= Overall joint optimization problem

min =/ +/ +
I J=J1+ /)2 +]3

s.t.  U,V,U,V,,M>0
= Optimization Algorithm

1 T 2 2
V1 =5 [1Pa, (41 = U, VD| + 5 AULIE + V4 1E)

1 2 4
+5[1Pa, (A2 = UVD|I; + SV + IV:113)

within-network completion

J» = as"(D - A} @ A)s + (1 — a)[|Ds — hl3

Network alignment

Js = gllpﬁl(vlv{ - U,M" UL A,U,MUD)|]

2 by, @5 - vmuTa MU

cross-network completion

— Block coordinate descent + Multiplicative update

— Mathematical details in paper

— Complexity: linear for both time and space complexity

= Qutput:

— (1) Alignment matrix S = aU,MU! + (1 — a)H,;
—(2) Complete adjacency matrix A; = U, V1, A5 = U,V5,
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Experiments

= Datasets
Category Network # of Nodes # of Edges
Collaboration GrQc 5,241 14,484
Infrastructure Oregon 7,352 15,665
Social Google+ 23,628 39,194
Social Youtube 1,134,890 2,987,624

= Evaluation objectives

— Effectiveness of aligning the incomplete networks

— Effectiveness of multiple network completion

— Efficiency and scalability
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Effectiveness of network alignment

Oregon infrastructure network
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Google+ social network
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— (1) INEAT achieves a better alignment accuracy

— (2) completion-then-alignment (FINAL-IMP) might be worse
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Effectiveness of network completion

Google+ social network

GrQc collaboration network
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Efficiency and Scalability

Balance between accuracy

& running time
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= Observations:

Scalability
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— (1) INEAT has a better accuracy-time trade-off;

—(2) INEAT has a linear complexity w.r.t # of nodes
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Roadmap
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Conclusions

= |Incomplete Network Alignment
— Q1: Alignment efficiency
— Al: Network completion helps alignment
— Q2: Alignment accuracy

— A2: Network alignment helps completion
= Results
— Better network alignment and completion performance
— Fast, and linear complexity
= More In paper
— Detalls of the optimization algorithm

— Proof of low-rank structure of alignment matrix
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Thank You!




