iNEAT: Incomplete Network Alignment

Presented by Si Zhang (ASU)

Si Zhang I

Hanghang Tong

Jie Tang

Jiejun Xu

Why Incomplete Network Alignment?

Networks are multi-sourced (Variety)

- Networks are often incomplete (Veracity)
 - Missing edges in multiple networks
- Q: how to align networks with missing edges?

How about Completion-Then-Alignment?

A natural choice

Completion ideally provides higher-quality networks

Completion-Then-Alignment: Limitations

- Limitation 1: alignment efficiency
 - Many alignment methods have O(mn) complexity

of edges

- Densified networks after completion intensify computation
- -Q1: how to make alignment and completion more efficient?
- Limitation 2: alignment accuracy
 - Potential introduced noisy links could affect alignment
 - -Q2: how to complete networks to benefit alignment?

Prob. Def: Incomplete Network Alignment

Given:

- -(1) Adjacency matrices A_1, A_2 of two incomplete networks
- -(2) a prior alignment preference matrix H

Output:

- -(1) Alignment matrix S
- (2) Adjacency matrices A_1^*, A_2^* of the complete networks

Preliminaries

- 5 -

• Network Alignment (FINAL, IsoRank) $\min_{s} \alpha s^{T} (\boldsymbol{D}_{1} \otimes \boldsymbol{D}_{2} - \boldsymbol{A}_{1} \otimes \boldsymbol{A}_{2}) s + (1 - \alpha) \|\boldsymbol{s} - \boldsymbol{h}\|_{2}^{2}$

- Intuition: Alignment consistency

- Complexity: O(mn) or $O(n^2)$ with approximation
- Network Completion (Factorization-Based)

$$\min_{\boldsymbol{U}_{1},\boldsymbol{V}_{1},\boldsymbol{U}_{2},\boldsymbol{V}_{2}} J_{1} = \frac{1}{2} \left\| P_{\Omega_{1}} (\boldsymbol{A}_{1} - \boldsymbol{U}_{1} \boldsymbol{V}_{1}^{T}) \right\|_{F}^{2} + \frac{\lambda}{2} (\|\boldsymbol{U}_{1}\|_{F}^{2} + \|\boldsymbol{V}_{1}\|_{F}^{2}) \\ + \frac{1}{2} \left\| P_{\Omega_{2}} (\boldsymbol{A}_{2} - \boldsymbol{U}_{2} \boldsymbol{V}_{2}^{T}) \right\|_{F}^{2} + \frac{\lambda}{2} (\|\boldsymbol{U}_{2}\|_{F}^{2} + \|\boldsymbol{V}_{2}\|_{F}^{2})$$

within-network completion

- Intuition: low-rank characteristics of real networks

Zhang, Si, and Hanghang Tong. "FINAL: Fast Attributed Network Alignment." *KDD*. 2016. Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional orthology detection." *National Academy of Sciences*, (2008).

Rennie, Jasson DM, and Nathan Srebro. "Fast maximum margin matrix factorization for collaborative prediction." ICML. ACM, 2005.

- Motivation and Background \checkmark
- Q1: Network Completion Helps Alignment
- Q2: Network Alignment Helps Completion
- INEAT: Optimization Algorithm
- Experiments
- Conclusions

Network Completion Helps Alignment

Alignment across complete networks

$$\min_{\boldsymbol{s}} J_2 = \alpha \boldsymbol{s}^T (\boldsymbol{D} - \boldsymbol{A}_1^* \otimes \boldsymbol{A}_2^*) \boldsymbol{s} + (1 - \alpha) \| \boldsymbol{D} \boldsymbol{s} - \boldsymbol{h} \|_2^2$$

 $-A_1^* = U_1 V_1^T$, $A_2^* = U_2 V_2^T$ are complete adjacency matrices

- Benefit: higher-quality of input networks
- Low-rank structure of alignment matrix
 - Low rank of networks —> low rank of alignment matrix

$$-S = \alpha U_2 M U_1^T + (1 - \alpha) H \text{ (proof in paper)}$$

- Benefit: an alignment algorithm with a linear complexity

- Motivation and Background \checkmark
- Q1: Network Completion Helps Alignment
- Q2: Network Alignment Helps Completion
- INEAT: Optimization Algorithm
- Experiments
- Conclusions

Network Alignment Helps Completion

- Auxiliary confidence of edge existence
 - -(1) node-a and node-x are aligned
 - -(2) node-b and node-y are aligned
 - -(3) node-x and node-y are connected
 - Infer: a potential edge (a, b)

$$\boldsymbol{A}_{1}^{*}(a,b) \approx \sum_{x,y}^{n_{2}} \boldsymbol{S}(a,b) \boldsymbol{S}(b,y) \boldsymbol{A}_{2}(x,y) = (\boldsymbol{S}^{T} \boldsymbol{A}_{2} \boldsymbol{S})(a,b)$$

Mathematically, we have

$$\min_{\boldsymbol{U}_{1},\boldsymbol{V}_{1},\boldsymbol{U}_{2},\boldsymbol{V}_{2},\boldsymbol{M}} J_{3} = \frac{\beta}{2} \left\| P_{\overline{\Omega}_{1}} (\boldsymbol{U}_{1}\boldsymbol{V}_{1}^{T} - \boldsymbol{U}_{1}\boldsymbol{M}^{T}\boldsymbol{U}_{2}^{T}\boldsymbol{A}_{2}\boldsymbol{U}_{2}\boldsymbol{M}\boldsymbol{U}_{1}^{T}) \right\|_{F}^{2} + \frac{\beta}{2} \left\| P_{\overline{\Omega}_{2}} (\boldsymbol{U}_{2}\boldsymbol{V}_{2}^{T} - \boldsymbol{U}_{2}\boldsymbol{M}\boldsymbol{U}_{1}^{T}\boldsymbol{A}_{1}\boldsymbol{U}_{1}\boldsymbol{M}^{T}\boldsymbol{U}_{2}^{T}) \right\|_{F}^{2}$$

cross-network completion

 G_1

G₂

 G_1

: Observed edges : Recovered edges : Alignment

- Motivation and Background \checkmark
- Q1: Network Completion Helps Alignment
- Q2: Network Alignment Helps Completion
- INEAT: Optimization Algorithm
- Experiments
- Conclusions

iNEAT: Optimization Algorithm

Overall joint optimization problem

$$\min_{\substack{U_1, V_1, U_2, V_2, M \\ s. t.}} J = J_1 + J_2 + J_3$$

$$U_1, V_1, U_2, V_2, M \ge 0$$

$$J_{1} = \frac{1}{2} \|P_{\Omega_{1}}(A_{1} - U_{1}V_{1}^{T})\|_{F}^{2} + \frac{\lambda}{2}(\|U_{1}\|_{F}^{2} + \|V_{1}\|_{F}^{2}) \\ + \frac{1}{2} \|P_{\Omega_{2}}(A_{2} - U_{2}V_{2}^{T})\|_{F}^{2} + \frac{\lambda}{2}(\|U_{2}\|_{F}^{2} + \|V_{2}\|_{F}^{2}) \\ \text{within-network completion} \\ J_{2} = \alpha s^{T}(D - A_{1}^{*} \otimes A_{2}^{*})s + (1 - \alpha)\|Ds - h\|_{2}^{2} \\ \text{Network alignment} \\ J_{3} = \frac{\beta}{2} \|P_{\overline{\Omega}_{1}}(U_{1}V_{1}^{T} - U_{1}M^{T}U_{2}^{T}A_{2}U_{2}MU_{1}^{T})\|_{F}^{2} \\ + \frac{\beta}{2} \|P_{\overline{\Omega}_{2}}(U_{2}V_{2}^{T} - U_{2}MU_{1}^{T}A_{1}U_{1}M^{T}U_{2}^{T})\|_{F}^{2} \\ \text{cross-network completion}$$

- Optimization Algorithm
 - Block coordinate descent + Multiplicative update
 - Mathematical details in paper
 - Complexity: *linear* for both time and space complexity
- Output:
 - -(1) Alignment matrix $\mathbf{S} = \alpha \mathbf{U}_2 \mathbf{M} \mathbf{U}_1^T + (1 \alpha) \mathbf{H}$;
 - (2) Complete adjacency matrix $A_1^* = U_1 V_1^T$, $A_2^* = U_2 V_2^T$

- Motivation and Background \checkmark
- Q1: Network Completion Helps Alignment
- Q2: Network Alignment Helps Completion
- iNEAT: Optimization Algorithm
- Experiments
- Conclusions

Experiments

Datasets

Category	Network	# of Nodes	# of Edges
Collaboration	GrQc	5,241	14,484
Infrastructure	Oregon	7,352	15,665
Social	Google+	23,628	39,194
Social	Youtube	1,134,890	2,987,624

- Evaluation objectives
 - Effectiveness of aligning the incomplete networks
 - Effectiveness of multiple network completion
 - Efficiency and scalability

Effectiveness of network alignment

Observations:

- -(1) iNEAT achieves a better alignment accuracy
- -(2) completion-then-alignment (FINAL-IMP) might be worse

Effectiveness of network completion

- Multiple networks completion is benefitted from alignment

Efficiency and Scalability

- -(1) iNEAT has a better accuracy-time trade-off;
- -(2) iNEAT has a *linear* complexity w.r.t # of nodes

- Motivation and Background \checkmark
- Q1: Network Completion Helps Alignment
- Q2: Network Alignment Helps Completion
- iNEAT: Optimization Algorithm
- Experiments
- Conclusions

Conclusions

- Incomplete Network Alignment
 - Q1: Alignment efficiency
 - A1: Network completion helps alignment
 - Q2: Alignment accuracy
 - A2: Network alignment helps completion
- Results
 - Better network alignment and completion performance
 - Fast, and *linear* complexity
- More in paper
 - Details of the optimization algorithm
 - Proof of low-rank structure of alignment matrix

Thank You!

