HiDDen: <u>Hierarchical Dense Subgraph Detection</u> with Application to Financial Fraud Detection

Presented by Si Zhang (ASU)

Dense Subgraph: What?

- Def: A subgraph of a high density
- Examples:
 - Clique: each node connects to every other node in the graph

Dense Subgraph: Why?

Dense Subgraph: Why?

Synthetic Identity Detection

Account 1 Account 2 Account 3 Account 4 Account 5 Account 6 Account 7 Account 8 Account 9 Account 10 Address 1 Phone 1 Holder Name 1 Holder Name 2 Holder Name 3 Holder Name 4 Address 2 Phone 2 Phone 3 Email 1: fortune.777@hotmail.com Email 2: fortune.666@hotmail.com Email 3: fortune0@bellsouth.net Email 4: fortune10@bellsouth.net Email 5: pricilen10@bellsouth.net Email 6: nicolson@bellsouth.net Email 7: nicolson10@bellsouth.net Email 8: pricilen@bellsouth.net

Dense Subgraph: How?

Density Measures

- Edge density:
$$d = \frac{2m}{n(n-1)}$$

- Average degree: $d = \frac{2m}{n}$
- Triangle density: $d = \frac{\# \ of \ triangles}{n(n-1)(n-2)/6}$
edge density=0.8
average degree=3.2
triangle density=0.3

- Existing Methods
 - Densest subgraph: greedy method [Charikar'00]
 - k-clique [Tsourakakis'15], k-core, k-plex
 - Denser than the densest [Tsourakakis'13]
- Key Idea: to flatly extract one or more partitions in a graph

Why Hierarchical Dense Subgraphs?

- A more comprehensive view of dense subgraph structures
- Example:

Challenges: Hierarchical Dense Subgraphs

- C1. Optimization Formulation
 - Flat detection: quadratic optimization constrained on simplex

$$\max_{x} \begin{array}{|c|} x^{T}Ax \end{array} \xrightarrow{\text{To maximize the number of edges in the subgraph}} \\ s.t \\ \sum_{i=1}^{n} x_{i}^{\beta} = 1, \quad x_{i} \ge 0 \end{array}$$

- **Question**: how to formulate multiple hierarchies together?
- C2. Optimization Algorithm
 - Flat detection: non-convex or polynomial approximation
 - **Question**: how to develop an effective and scalable algorithm?

Challenges: Hierarchical Dense Subgraphs

C3. Generalizations

- **Question**: How to generalize to bipartite graphs?

– Question: How to detect for a set of certain query nodes?

Outline

- Motivations
- Q1: HiDDen Formulation
- Q2: HiDDen Algorithm
- Q3: HiDDen Generalizations
- Experimental Results
- Conclusions

Prob. Def: Hierarchical Dense Subgraph Detection

Given:

- (1) adjacency matrix A; (2) missing edge penalty p
- (3) number of hierarchies K; (4) density increase ratio η .
- **Output**: subgraph node indicator vectors $x_1, x_2, ..., x_K$.
- An Illustrative Example

Prob. Def: Query-Specific Hierarchical Dense Subgraph Detection

Given:

- (1) adjacency matrix A; (2) missing edge penalty p
- (3) number of hierarchies K; (4) density increase ratio η ;
- (5) query node set V_s .
- **Output**: subgraph node indicator vectors $x_1, x_2, ..., x_K$.
- An Illustrative Example

HiDDen Formulation: Density Measure

- Intuition:
 - #1: Maximize the number of existing edges
 - #2: Minimize the penalty of the missing edges
- Mathematical Details:

$$\max_{x} \quad J(x) = x^{T}Ax - px^{T}(\mathbf{1}_{n \times n} - I - A)x$$

s.t $x \in \{0,1\}^{n}$
Intuition #1 Intuition #2

Correctness:

- Equivalent to edge surplus density w.r.t quasi-clique

Relaxation:

$$x \in \{0,1\}^n \quad \longrightarrow \quad \mathbf{0} \le x \le \mathbf{1}$$

HiDDen Formulation: Constraints for Hierarchies

- Constraints:
 - #1 Density variety: densities in two hierarchies exhibit a difference
 - #2 Nested node set: larger subgraphs contain smaller subgraphs
- Mathematical Details:
 - Density variety:

$$\frac{\left(\boldsymbol{x}^{k}\right)^{T}\boldsymbol{A}\boldsymbol{x}^{k}}{(\boldsymbol{x}^{k})^{T}(\boldsymbol{1}_{n\times n}-\boldsymbol{I})\boldsymbol{x}^{k}} \geq \eta \frac{\left(\boldsymbol{x}^{k-1}\right)^{T}\boldsymbol{A}\boldsymbol{x}^{k-1}}{(\boldsymbol{x}^{k-1})^{T}(\boldsymbol{1}_{n\times n}-\boldsymbol{I})\boldsymbol{x}^{k-1}}$$

Example: $d_3 \ge 1.1 \times d_2$

- Nested node set:

$$V^{k+1} \subseteq V^k \subseteq V^{k-1} \longrightarrow x^{k+1} \leq x^k \leq x^{k-1}$$

Example: $V^3 \subseteq V^2 \subseteq V^1 \subseteq V$

HiDDen Formulation: Objective Function

Objective function:

$$\max_{\substack{x_1,x_2,...,x_K \\ x_1,x_2,...,x_K}} \sum_{k=1}^{K} \left[(x^k)^T [(1+p)A - p(\mathbf{1}_{n \times n} - I)] x^k \right] \quad \begin{array}{l} \text{edge surplus in} \\ \text{k-th hierarchy} \\ \text{k-th hierarchy} \end{array}$$
s.
$$t \quad \frac{\left(x^j \right)^T A x^j}{(x^j)^T (\mathbf{1}_{n \times n} - I) x^j} \ge \eta \frac{\left(x^{j-1} \right)^T A x^{j-1}}{(x^{j-1})^T (\mathbf{1}_{n \times n} - I) x^{j-1}} \quad \begin{array}{l} \text{density} \\ \text{variety} \end{array}$$

$$x^{j+1} \le x^j \le x^{j-1} \\ \forall j = 1, 2, \dots, K \end{array}$$
nested node set

- Observation: a non-convex quadratic constrained quadratic programming problem (QCQP)
- Question: can we simplify the problem?

HiDDen Formulation: QCQP Relaxation

Constraint #1 Relaxation:

- Relax it to a regularization, i.e.,

$$\frac{(x^{j})^{T}Ax^{j}}{(x^{j})^{T}(\mathbf{1}_{n\times n}-I)x^{j}} \geq \eta \frac{(x^{j-1})^{T}Ax^{j-1}}{(x^{j-1})^{T}(\mathbf{1}_{n\times n}-I)x^{j-1}}$$

relax
$$\max_{x^{j}} (x^{j})^{T}Ax^{j} - C^{j-1}(x^{j})^{T}(\mathbf{1}_{n\times n}-I)x^{j}$$

where $C^{j-1} = \eta \frac{(x^{j-1})^{T}Ax^{j-1}}{(x^{j-1})^{T}(\mathbf{1}_{n\times n}-I)x^{j-1}}$ is a constant w.r.t x^{j}

- Relax to a quadratic optimization

- Intrinsically increase the missing edge penalties in each hierarchy

HiDDen Formulation: Overall Objective Function

- -p is the parameter of missing edge penalty
- β controls the importance of the constraint relaxation
- $-p + \beta C^{j-1}$ is the increased penalty for the k-th hierarchy

Outline

- Motivations
- Q1: HiDDen Formulation
- Q2: HiDDen Algorithm
- Q3: HiDDen Generalizations
- Experimental Results
- Conclusions

HiDDen Algorithm

- Observation: a non-convex quadratic optimization problem
- Solution: alternative projected gradient descent method

$$-\nabla_{x^{1}}f = -2(1+p)Ax^{1} + 2p\|x^{1}\|_{1}1 - 2px^{1}$$

$$-\nabla_{\mathbf{x}^{k}}f = -2(1+p+\beta)\mathbf{A}\mathbf{x}^{k} + 2(p+\beta C^{k-1})\left(\left\|\mathbf{x}^{k}\right\|_{1}\mathbf{1} - \mathbf{x}^{k}\right)$$

- Armijo's rule line search
- Stopping criterion: adopted from [Lin 2007]
- Benefits:
 - Converge to a stationary point
 - Time complexity: O(mK)
- Question: how to generalize to bipartite graph & query-specific

Outline

- Motivations v
- Q1: HiDDen Formulation
- Q2: HiDDen Algorithm
- Q3: HiDDen Generalizations
- Experimental Results
- Conclusions

HiDDen Generalizations: Bipartite Graph

 Key idea: indicator vectors for two types of nodes, x^k & y^k (k = 1, ..., K)

Objective function:

$$\min_{\substack{x^{1},...,x^{K},y^{1},...,y^{K}}} \frac{-(1+p)(x^{1})^{T}Ay^{1} + p\|x^{1}\|_{1}\|y^{1}\|_{1}}{\text{for k-th hierarchy}} -(1+p+\beta)\sum_{k=2}^{K} (x^{k})^{T}Ay^{k} + \sum_{k=2}^{K} (p+\beta C^{k-1})\|x^{k}\|_{1}\|y^{k}\|_{1}$$
s.t. $x^{j+1} \le x^{j} \le x^{j-1}, y^{j+1} \le y^{j} \le y^{j-1}, \forall j = 1, 2, ..., K$

for 1st bioraroby

Solution: alternative projected gradient descent method

- Alternate between x^1, \dots, x^K and y^1, \dots, y^K
- Stopping criterion: similar to previous

HiDDen Generalizations: Query–Specific

- Intuition: constrain $x_i^k = 1$, for $i \in V_s$
- Challenges: could lead to a mixed integer problem
- Key Idea: relax to $x_i^k \ge \delta$, where $\delta \in (0, 1)$ is relatively large

Outline

- Motivations
- Q1: HiDDen Formulation
- Q2: HiDDen Algorithm
- Q3: HiDDen Generalizations
- Experimental Results
- Conclusions

Experimental Setup

Datasets:

- DBLP co-author network (nodes: 38,624, edges: 200,332)
- Autonomous system network (nodes: 6,474, edges: 25,142)
- Financial network (account nodes: 29,851, PII nodes: 61,159)
- Trafficking network (traffickers: 1416, word nodes: 4225)

Evaluation Objectives:

- Effectiveness: density of each hierarchy and density variety
- Efficiency: running time and scalability

Comparison Methods:

HiDDen (Our Methods)	Baseline Methods
 HiDDen-Basic (quadratic programming separately) HiDDen-OPT (alternative gradient descent) 	 GreedyOQC [Tsourakakis'13] MURMS-Uni [Ding'08] R1NdM [Belachew'15]

R1. Effectiveness Results – Unipartite Network

Observation: densities are higher and increase up to 1

R2. Case Study on Co-Authorship Network

Observation: (1) difference in research area; (2) most of people in 5th hierarchy are in mid-career

Differences between 5th and 10th hierarchy:

Observation: 10th hierarchy contain only flagship researchers

R3. Effectiveness Results – Bipartite Network

Observation: densities exhibit a good variety and are up to 1

R4. Case Study on Financial Network

 Differences among hierarchies for synthetic identity fraud detection problem:

PII nodes in 1st Hierarchy

Observation: multiple hierarchies of dense subgraph can more accurately detect the synthetic identity fraud

R5. Case Study on Trafficking Network

Differences among hierarchies for trafficking problem:

Observation: (1) most of the traffickers are **forcing the underage girls for prostitution in hotels in exchange for cash, drugs, and other items**; (2) some are from same family

R6. Quality-Speed Balance

Observation: HiDDen gains a better balance between running time and avg. density, as well as density variety

R7. Scalability of HiDDen

Observation: HiDDen has a linear time complexity w.r.t # of edges

Outline

- Motivations
- Q1: HiDDen Formulation
- Q2: HiDDen Algorithm
- Q3: HiDDen Generalizations
- Experimental Results
- Conclusions

Conclusions

Hierarchical Dense Subgraph Detection

- Q1: Formulation
- A1: HiDDen
- Q2: Algorithm
- $\sum_{\substack{k=2\\ x^{j+1} \leq x^j \leq x^{j-1},}}^{n} (x^k)^T A x^k + \sum_{\substack{k=2\\ k=2}}^{n} (p + \beta C^{j-1}) \left(\left\| x^k \right\|_1^2 \left\| x^k \right\|_2^2 \right)$ – A2: Alternative Projected Gradient Descent Method

s.t.

min $x_1, x_2, ..., x_K$

- Q3: Generalizations
- A3: Algorithms for bipartite graphs & query-specific
- Results
 - HiDDen outperform other baseline methods

in density and variety

HiDDen has a linear time complexity

 $-(1+p)(x^{1})^{T}Ax^{1} + p(||x^{1}||_{1}^{2} - ||x^{1}||_{2}^{2}) - (1+p+\beta)$

