FINAL: Fast Attributed $\underline{\text { Network Alignment }}$

Presented by Si Zhang (ASU)

Si Zhang

Hanghang Tong

Why Network Alignment?

- Find Someone Like You

More Applications

Identify Species-Specific Pathways [Singh'08]
Protein-Protein Interaction (PPI) networks

PPI network 1
PPI network 2
Cross-Site Recommendation [Zhang'14]

Cross Network Information Diffusion [Zhan'16]

Ontology Matching on Semantic Web [Doan'02]

Why Network Alignment: How to

- Existing Methods
- IsoRank [Singh'08], NetAlign [Bayati'09], BigAlign [Koutra'13], UMA [Zhang'15]
- Key Idea: topological consistency
- Network \boldsymbol{G}_{2} is a noisy permutation of network \boldsymbol{G}_{1}

$$
-\boldsymbol{G}_{2} \approx S^{T} \boldsymbol{G}_{1} S
$$

Topology Consistency: Limitations

- Topological consistency could be easily violated
- Same nodes may behave differently across different networks
- Different nodes may have similar connectivity structures

Nodes 2=3=4=5
Nodes 2' $=3^{\prime}=4^{\prime}=5^{\prime}$

Only topology is not enough!

Topology Consistency: How to Rescue

- Real networks have rich attributes on nodes and/or edges

- Q: how to calibrate topology-based alignment by leveraging attributes?

Challenges: Attributed Network Alignment

-C1: Formulation

- C2: Optimality
- C3: Scalable Computation

C1. Formulation

- Typical Network Alignment

NetAlign [Bayati'09]	UMA [Zhang'15]		
$\begin{array}{ll} \underset{x}{\operatorname{maximize}} & \alpha \mathrm{~h}^{T} \mathrm{~s}+\left(\frac{\beta}{2}\right) s^{T} W s \\ \text { subject to } & \text { As } \leq 1, s_{i i^{\prime}} \in\{0,1\} \end{array}$	$\begin{array}{ll} \underset{S}{\operatorname{minimize}} & \left\\|S^{T} A S-B\right\\|_{F}^{2} \\ \text { s.t } & S 1^{n_{2} \times 1} \leq 1^{\mathrm{n}_{1} \times 1} \\ & S^{T} 1^{\mathrm{n}_{1} \times 1} \leq 1^{n_{2} \times 1} \end{array}$		

- Obs: only encode topological information
- Q: what are their attributed counterparts?

C2. Optimality

- Obs \#1: many topology-based approaches are non-convex or even NP-hard \longrightarrow find the local minima

- Obs \#2: attribute may complicate the optimization problem

$$
\begin{aligned}
& \min _{\boldsymbol{S}} J(\boldsymbol{S})=\sum_{\substack{a, b, x, y}}\left[\frac{\boldsymbol{S}(x, a)}{\sqrt{f(x, a)}}-\frac{\boldsymbol{S}(y, b)}{\sqrt{f(y, b)}}\right]^{2} \\
& \times \boldsymbol{A}_{1}(a, b) \boldsymbol{A}_{2}(x, y)
\end{aligned}
$$

without attributes

$$
\begin{aligned}
\min _{\boldsymbol{S}} J(\boldsymbol{S}) & =\sum_{\substack{a, b, x, y}}\left[\frac{\boldsymbol{S}(x, a)}{\sqrt{f(x, a)}}-\frac{\boldsymbol{S}(y, b)}{\sqrt{f(y, b)}}\right]^{2} \boldsymbol{A}_{1}(a, b) \boldsymbol{A}_{2}(x, y) \\
& \times \mathbb{I}\left(\boldsymbol{N}_{1}(a, a)=\boldsymbol{N}_{2}(x, x)\right) \mathbb{I}\left(\boldsymbol{N}_{1}(b, b)=\boldsymbol{N}_{2}(y, y)\right) \\
& \times \mathbb{I}\left(\boldsymbol{E}_{1}(a, b)=\boldsymbol{E}_{2}(x, y)\right)
\end{aligned}
$$

with attributes

- Q \#1: what is the exact optimality of the attributed network alignment?
- Q \#2: how to get the optimal solution, with a comparable complexity (as the topology-alone alignment)?

C3. Scalable Computation

- Obs \#1: most existing methods have an $O(\mathrm{mn})$ complexity [Singh'08].
- Obs \#2: best empirical scalability is near-linear [Koutra'13].

- Q: how to scale up attributed network alignment?

C3. Scalable Computation

- Obs: cross-network search - to find similar users in one network for a given user in another network.

- Q: how to speed up on-query network alignment, without solving the full alignment problem?

Outline

- Motivations
- Q1: FINAL Formulation
- Q2: FINAL Algorithms
- Q3: FINAL Speed-up Computation
- Experimental Results
- Conclusions

Prob. Def: Attributed Network Alignment

- Given:
- (1) two attributed networks $\mathrm{G}_{1}=\left\{\boldsymbol{A}_{1}, \boldsymbol{N}_{1}, \boldsymbol{E}_{1}\right\}$ and $G_{2}=$
$\left\{\boldsymbol{A}_{2}, \boldsymbol{N}_{2}, \boldsymbol{E}_{2}\right\}$;
- (2 - optional) a prior alignment preference \boldsymbol{H}.
- Find: alignment/similarity matrix S
- An Illustrative Example

Node Attribute: different shapes Edge Attribute: straight vs. curved lines

Given

Find

Prob. Def: On-query Attributed Network Alignment

- Given:
- (1) two attributed networks $\mathrm{G}_{1}=\left\{\boldsymbol{A}_{1}, \boldsymbol{N}_{1}, \boldsymbol{E}_{1}\right\}$ and $G_{2}=$
$\left\{A_{2}, \boldsymbol{N}_{2}, \boldsymbol{E}_{2}\right\}$;
- (2 - optional) a prior alignment preference \boldsymbol{H};
- (3) a query node-a in G_{1}
- Find: a vector s_{q} (similarities of node- a vs. all nodes in G_{2})

Given

Find

Arizona State University

FINAL Formulation \#1: Topological Consistency

- Intuition: similar node-pairs tend to have similar neighboring node-pairs

- Example:
- large $\boldsymbol{S}(a, x)$
- large $\boldsymbol{A}_{1}(a, b)$ and $\left.\boldsymbol{A}_{2}(x, y)\right] \longrightarrow$ large $\boldsymbol{S}(b, y)$
- Mathematical Details: $\min _{\mathbf{S}}[\boldsymbol{S}(a, x)-\boldsymbol{S}(b, y)]^{2} \boldsymbol{A}_{1}(a, x) \boldsymbol{A}_{2}(b, y)$

FINAL Formulation \#2: Node Attribute Consistency

- Intuition: similar node-pairs share same node attributes

- Example:
- large $\boldsymbol{S}(a, x) \longrightarrow$ node- a and node- x share same node attribute
- Mathematical Details: if $\boldsymbol{N}_{1}(a, a)=\boldsymbol{N}_{2}(x, x)$ and $\boldsymbol{N}_{1}(\mathrm{~b}, \mathrm{~b})=\boldsymbol{N}_{2}(\mathrm{y}, \mathrm{y})$, $\min _{\mathbf{S}}[\boldsymbol{S}(a, x)-\boldsymbol{S}(b, y)]^{2} \boldsymbol{A}_{1}(a, x) \boldsymbol{A}_{2}(b, y)$

FINAL Formulation \#3: Edge Attribute Consistency

- Intuition: similar node-pairs connect to their neighbor-pairs via same edge attributes

- Example:
- large $\boldsymbol{S}(a, x)$
- large $\boldsymbol{S}(b, y)]$ edge (a, b) and (x, y) share same attribute
- Mathematical Details: if $\boldsymbol{E}_{1}(a, b)=\boldsymbol{E}_{2}(x, y)$,

$$
\min _{\mathbf{S}}[\boldsymbol{S}(a, x)-\boldsymbol{S}(b, y)]^{2} \boldsymbol{A}_{1}(a, x) \boldsymbol{A}_{2}(b, y)
$$

Putting everything together

- Objective Function:

$$
\begin{aligned}
\min _{\boldsymbol{S}} J(\boldsymbol{S}) & =\sum_{a, b, x, y}\left[\frac{\boldsymbol{S}(x, a)}{\sqrt{f(x, a)}}-\frac{\boldsymbol{S}(y, b)}{\sqrt{f(y, b)}}\right]^{2} \begin{array}{l}
\# 1 . \text { Topology Consistency } \\
\boldsymbol{A}_{1}(a, b) \boldsymbol{A}_{2}(x, y)
\end{array} \\
& \times \mathbb{\mathbb { I } (\boldsymbol { N } _ { 1 } (a , a) = \boldsymbol { N } _ { 2 } (x , x)) \mathbb { I } (\boldsymbol { N } _ { 1 } (b , b) = \boldsymbol { N } _ { 2 } (y , y))} \\
& \times \overline{\left.\mathbb{I}\left(\boldsymbol{E}_{1}(a, b)=\boldsymbol{E}_{2}(x, y)\right)\right)} \text { \#2. Node Attribute Consistency }
\end{aligned}
$$

- f(x, $\boldsymbol{a})$: \#3. Edge Attribute Consistency
- 'joint degree' of node- a and node- x
- normalization to make the optimization problem convex
- Generalization:
- replacing $\mathbb{I}(\cdot)$ by an attribute similarity function
- can handle numerical attributes on nodes and/or edges.

FINAL Formulation: Matrix Form

- Matrix-Form Objective Function

$$
\begin{aligned}
& \min _{\boldsymbol{S}} J(\boldsymbol{S}) \\
& =\min _{\boldsymbol{s}} \sum_{v, \boldsymbol{w}}\left[\frac{\boldsymbol{s}(v)}{\sqrt{\boldsymbol{D}(v, v)}}-\frac{\boldsymbol{s}(w)}{\sqrt{\boldsymbol{D}(w, w)}}\right]^{2} \boldsymbol{W}(v, w) \\
& \boldsymbol{s}=\operatorname{vec}(\boldsymbol{S})
\end{aligned}=\min _{\boldsymbol{s}} \boldsymbol{s}^{T}(\boldsymbol{I}-\widetilde{\boldsymbol{W}}) \boldsymbol{s}
$$

$-\boldsymbol{W}=\boldsymbol{N}\left[\boldsymbol{E} \odot\left(\boldsymbol{A}_{1} \otimes \boldsymbol{A}_{2}\right)\right] \boldsymbol{N}$, i.e., the attributed Kronecker product
$-\boldsymbol{D}$ is the degree matrix of \boldsymbol{W}
$\widetilde{\boldsymbol{W}}=\boldsymbol{D}^{-\frac{1}{2}} \mathbf{W} \boldsymbol{D}^{-\frac{1}{2}}$ is the symmetrically normalization of \boldsymbol{W}

FINAL Formulation: Matrix Form with Regularization

- Add a regularization term

$$
\min _{s} \alpha \boldsymbol{s}^{T}(I-\widetilde{W}) \boldsymbol{s}+(1-\alpha)\|\boldsymbol{s}-\boldsymbol{h}\|_{2}^{2}
$$

- \boldsymbol{h} is default as a uniform vector
- \boldsymbol{h} encodes the prior knowledge of alignment preferences
- \boldsymbol{h} avoids trivial solution, e.g., optimal solution $\boldsymbol{s}=\mathbf{0} \mathbf{w} / \mathrm{o} \boldsymbol{h}$
- teleport vector in PageRank, restart vector in RWR (on the attributed Kronecker product graph)

Relationship with Existing Methods

- FINAL vs. IsoRank [Singh'08]
- w/o attribute, FINAL = IsoRank (by a scaling factor $\boldsymbol{D}^{\frac{1}{2}}$)
- FINAL vs. Random Walk Graph Kernel (RWGK) [Vishwanathan'10] $-k\left(G_{1}, G_{2}\right)=\sum_{i} \boldsymbol{q}(i) \boldsymbol{s}(i)$, where \boldsymbol{q} is the stopping probability vector
- FINAL vs. SimRank (Node Proximity) [Jeh'02]
$-G_{1}=G_{2}$ and w/o attribute, FINAL $=$ SimRank by a scaling factor $\boldsymbol{D}^{\frac{1}{2}}$
- FINAL vs. Random Walk with Restart (RWR) [Tong'06]
$-\boldsymbol{s}=$ RWR vector (defined on the attributed Kronecker graph)

Outline

- Motivations
- Q1: FINAL Formulation
- Q2: FINAL Algorithms
- Q3: FINAL Speed-up Computation
- Experimental Results
- Conclusions

FINAL Solutions

$$
\boldsymbol{s}=\alpha \boldsymbol{D}^{-\frac{1}{2}} \operatorname{Nvec}\left(\sum_{l=1}^{L}\left(\boldsymbol{E}_{2}^{l} \odot \boldsymbol{A}_{2}\right) \boldsymbol{Q}\left(\boldsymbol{E}_{1}^{l} \odot \boldsymbol{A}_{1}\right)^{T}\right)+(1-\alpha) \boldsymbol{h}
$$

$$
\min _{\boldsymbol{s}} \alpha \boldsymbol{s}^{T}(\boldsymbol{I}-\widetilde{\boldsymbol{W}}) \boldsymbol{s}+(1-\alpha)\|\boldsymbol{s}-\boldsymbol{h}\|_{2}^{2}
$$

- Obs: a convex optimization problem
- Benefits: a fixed-point solution converging to the global optimal solution

$$
\boldsymbol{s}=a \widetilde{\boldsymbol{W}} \boldsymbol{s}+(1-\alpha) \boldsymbol{h} \Rightarrow \boldsymbol{s}=(1-\alpha)(\boldsymbol{I}-\alpha \widetilde{\boldsymbol{W}})^{-1} \boldsymbol{h} \text { (closed form) }
$$

- Intuition: a similarity propagation to neighboring nodepairs, which is additionally filtered by node/edge attributes
- Challenges: computationally VERY expensive
- Iterative solution: $O\left(m^{2} t_{\text {max }}\right)$ (due to Kronecker product)
- Closed form solution: $O\left(m^{6}\right)$ (due to matrix inversion)
- Q: how to scale up and speed up?

Outline

- Motivations
- Q1: FINAL Formulation
- Q2: FINAL Algorithms
- Q3: FINAL Speed-up Computation
- Experimental Results
- Conclusions

FINAL — Speed-up Full Alignment

- Obs: FINAL vs. RWGK and RWR
- Solution: leverage the existing fast solutions for RWGK and/or RWR [Kang 2012]
- An Example: only consider node attributes

$$
\boldsymbol{s}=(1-\alpha)\left(I-\alpha D_{N}^{-\frac{1}{2}} N\left(A_{1} \otimes A_{2}\right) N D_{N}^{-\frac{1}{2}}\right)^{-1} h
$$

- Key Idea: low rank approximation of \boldsymbol{A}_{1} and \boldsymbol{A}_{2}

$$
\begin{aligned}
& \begin{array}{l}
\boldsymbol{A}_{1} \approx \boldsymbol{U}_{1} \boldsymbol{\Lambda}_{1} \boldsymbol{U}_{1}^{T} \\
\boldsymbol{A}_{2} \approx \boldsymbol{U}_{2} \boldsymbol{\Lambda}_{2} \boldsymbol{U}_{2}^{T}
\end{array} \begin{array}{l}
\boldsymbol{S} \approx(1-\alpha)\left(\boldsymbol{I}+\alpha \boldsymbol{D}_{N}^{-\frac{1}{2}} \boldsymbol{N} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T} \boldsymbol{N} \boldsymbol{D}_{N}^{-\frac{1}{2}}\right) \boldsymbol{h} \\
\text { Morrison- Lemma } \\
\text { where } \boldsymbol{U}=\boldsymbol{U}_{1} \otimes \boldsymbol{U}_{2} \\
\boldsymbol{\Lambda}=\left[\left(\boldsymbol{\Lambda}_{1} \otimes \boldsymbol{\Lambda}_{2}\right)^{-1}-\alpha \boldsymbol{U}^{T} \boldsymbol{N} \boldsymbol{D}_{N}^{-1} \boldsymbol{N U}\right]^{-1}
\end{array}
\end{aligned}
$$

- Complexity: $O\left(n^{2} r^{4}\right)$
- Challenge: it is still $O\left(n^{2}\right)$. Can we do better?

FINAL — Speed-up On-query Alignment

- Obs: only need one column, or one segment of \boldsymbol{S}
- Key Ideas:
- Low-rank approximation (same as for the full alignment)
- Relax the degree matrix $\boldsymbol{D}_{N}=\boldsymbol{D}_{1} \otimes \boldsymbol{D}_{2}$
- Details: $\boldsymbol{s}_{a}=(1-\alpha)\left[\boldsymbol{H}(:, a)+\alpha\left(\boldsymbol{D}_{1}(a, a) \boldsymbol{D}_{2}\right)^{-\frac{1}{2}} \boldsymbol{N}_{a}\right]$

$$
\begin{gathered}
\times[\underbrace{\left(\boldsymbol{U}_{1}(a,:) \otimes \boldsymbol{U}_{2}\right)}_{O\left(n r^{2}\right)} \begin{array}{l}
\text { (1) same trick as } \\
\text { for full alignment }
\end{array} O_{\boldsymbol{\Lambda}}^{\left.\boldsymbol{U}^{T} \boldsymbol{N}\left(\boldsymbol{D}_{1} \otimes \boldsymbol{D}_{2}\right)^{-\frac{1}{2}} \boldsymbol{h}\right)}] \\
\boldsymbol{g}=\boldsymbol{U}^{T} \boldsymbol{N}\left(\boldsymbol{D}_{1} \otimes \boldsymbol{D}_{2}\right)^{-\frac{1}{2} \boldsymbol{h}}=\sum_{i=1}^{p} \sum_{k=1}^{K} \sigma_{i} \underbrace{\boldsymbol{U}_{1}^{T} \boldsymbol{N}_{1}^{k} \boldsymbol{D}_{1}^{-\frac{1}{2}} \boldsymbol{v}_{i}}_{O(n r)}) \otimes \underbrace{\boldsymbol{U}_{2}^{T} \boldsymbol{N}_{2}^{k} \boldsymbol{D}_{2}^{-\frac{1}{2}} \boldsymbol{u}_{i}}_{O(n r)}) \\
\begin{array}{l}
\text { (2) SVD on matrix } \\
\boldsymbol{H}=\sum_{i=1}^{p} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
\end{array}
\end{gathered}
$$

- Benefits: linear complexity $O\left(\left(K r^{2}+p K r+p^{2}\right) n+m r+m_{H} p+r^{6}\right)$

Outline

- Motivations
- Q1: FINAL Formulation
- Q2: FINAL Algorithms
- Q3: FINAL Speed-up Computation
- Experimental Results
- Conclusions

Experimental Setup

- Datasets:
- DBLP co-author networks (nodes: 9,143 vs. 9,143)
- Douban online \& offline networks (nodes: 3,906 vs. 1,118)
- Flickr \& Last.fm networks (nodes: 12,974 vs. 15,436)
- Flickr \& Myspace networks (nodes: 6,714 vs. 10,733)
- Evaluation Objectives:
- Effectiveness: one-to-one alignment accuracy
- Efficiency: running time
- Comparison Methods:

FINAL (Our Methods)	Baseline Methods
a FINAL-NE (with node \& edge attributes)	\square IsoRank [Singh'08]
■ FINAL-N (with node attributes)	\square NetAlign [Bayati'09]
\square FINAL-E (with edge attributes)	\square UniAlign [Koutra'13]
\square FINAL-N+ (speed-up FINAL-N)	\square Klau's Algorithm [Klau'09]

R1. Effectiveness Results

Obs: attributes help improve network alignment

R2. Quality-Speed Balance

Obs: FINAL gain a better quality-speed balance.

R3. Scalability of FINAL-N+

Obs: FINAL-N+ has a quadratic time complexity w.r.t the number of nodes.

R4. Quality-Speed of FINAL On-Query

Obs: FINAL On-Query gains around 90\% accuracy relative to exact FINAL-N, but more than 100 times faster.

R5. Scalability of FINAL On-Query

Obs: FINAL On-Query has a linear time complexity

Outline

- Motivations
- Q1: FINAL Formulation
- Q2: FINAL Algorithms
- Q3: FINAL Speed-up Computation
- Experimental Results
- Conclusions

Conclusions

- Attributed Network Alignment
- Q1: Formulation
- A1: FINAL family
- Q2: Optimality

$$
\begin{aligned}
\min _{\boldsymbol{S}} J(\boldsymbol{S}) & =\sum_{a, b, x, y}\left[\frac{\boldsymbol{S}(x, a)}{\sqrt{f(x, a)}}-\frac{\boldsymbol{S}(y, b)}{\sqrt{f(y, b)}}\right]^{2} \boldsymbol{A}_{1}(a, b) \boldsymbol{A}_{2}(x, y) \\
& \times \mathbb{I}\left(\boldsymbol{N}_{1}(a, a)=\boldsymbol{N}_{2}(x, x)\right) \mathbb{I}\left(\boldsymbol{N}_{1}(b, b)=\boldsymbol{N}_{2}(y, y)\right) \\
& \times \mathbb{I}\left(\boldsymbol{E}_{1}(a, b)=\boldsymbol{E}_{2}(x, y)\right)
\end{aligned}
$$

- A2: Convex optimization problem \longrightarrow global optimal solution
- Q3: Scalable computation
- A3: Fast algorithms (FINAL-N+ \& FINAL On-Query)
- Results
- FINAL outperform other baseline methods
- FINAL On-Query linear complexity
- More in Paper
- Proof of optimality \& more experimental results

