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Why Network Alignment?

▪ Find Someone Like You

▪Q: what if someone lives in a different universe 

(network)?
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More Applications

Ontology Matching on Semantic

Web [Doan’02]

Cross-Site Recommendation [Zhang’14]

Protein-Protein Interaction (PPI) networks

Identify Species-Specific Pathways 

[Singh’08]

PPI network 1 PPI network 2 social network 1 social network 2

Cross Network Information 

Diffusion [Zhan’16]
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Why Network Alignment: How to

▪ Existing Methods

– IsoRank [Singh’08], NetAlign [Bayati’09], BigAlign [Koutra’13], 

UMA [Zhang’15]

▪ Key Idea: topological consistency

– Network 𝑮2 is a noisy permutation of network 𝑮1

– 𝑮2 ≈ 𝑺𝑇𝑮1𝑺
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Topology Consistency: Limitations

▪ Topological consistency could be easily violated

– Same nodes may behave differently across different networks

– Different nodes may have similar connectivity structures

Only topology is not enough!

Nodes 2=3=4=5

Nodes 2’=3’=4’=5’
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Topology Consistency: How to Rescue 

▪ Real networks have rich attributes on nodes and/or edges

▪ Q: how to calibrate topology-based alignment by 

leveraging attributes?
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Challenges: Attributed Network Alignment

▪C1: Formulation

▪C2: Optimality

▪C3: Scalable Computation
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C1. Formulation 

▪ Typical Network Alignment 

▪ Obs: only encode topological information

▪ Q: what are their attributed counterparts?

NetAlign [Bayati’09] UMA [Zhang’15]

maximiz𝑒
𝑥

𝛼h𝑇s +
𝛽

2
𝑠𝑇𝑊𝑠

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴s ≤ 1, 𝑠𝑖𝑖′ ∈ {0,1}

minimize
𝑆

𝑆𝑇𝐴S − 𝐵 𝐹
2

𝑠. 𝑡 𝑆1𝑛2×1 ≤ 1n1×1

𝑆𝑇1n1×1 ≤ 1𝑛2×1
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C2. Optimality

▪ Obs #1: many topology-based approaches are non-convex 

or even NP-hard       find the local minima 

▪ Obs #2: attribute may complicate the optimization problem

▪ Q #1: what is the exact optimality of the attributed network 

alignment?

▪ Q #2: how to get the optimal solution, with a comparable 

complexity (as the topology-alone alignment)?

min
𝐒

𝐽 𝑺 = 

𝑎,𝑏,𝑥,𝑦

𝑺 𝑥, 𝑎

𝑓 𝑥, 𝑎
−

𝑺 𝑦, 𝑏

𝑓 𝑦, 𝑏

2

𝑨1 𝑎, 𝑏 𝑨2 𝑥, 𝑦

× 𝕀 𝑵1 𝑎, 𝑎 = 𝑵2 𝑥, 𝑥 𝕀 𝑵1 𝑏, 𝑏 = 𝑵2 𝑦, 𝑦

× 𝕀 𝑬1 𝑎, 𝑏 = 𝑬2 𝑥, 𝑦

with attributes

min
𝐒

𝐽 𝑺 = 

𝑎,𝑏,𝑥,𝑦

𝑺 𝑥, 𝑎

𝑓 𝑥, 𝑎
−

𝑺 𝑦, 𝑏

𝑓 𝑦, 𝑏

2

× 𝑨1 𝑎, 𝑏 𝑨2 𝑥, 𝑦

without attributes
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C3. Scalable Computation

▪ Obs #1: most existing methods have an 𝑂(𝑚𝑛) complexity 

[Singh’08].

▪ Obs #2: best empirical scalability is near-linear [Koutra’13].

▪ Q: how to scale up attributed network alignment?
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C3. Scalable Computation

▪ Obs: cross-network search – to find similar users in one 

network for a given user in another network.

▪ Q: how to speed up on-query network alignment, without 

solving the full alignment problem?
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Outline

▪Motivations

▪Q1: FINAL Formulation

▪Q2: FINAL Algorithms

▪Q3: FINAL Speed-up Computation

▪ Experimental Results

▪ Conclusions
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Prob. Def: Attributed Network Alignment

▪ Given:

– (1) two attributed networks G1 = {𝑨1, 𝑵1 , 𝑬1} and 𝐺2 =

𝑨2, 𝑵2, 𝑬2 ;

– (2 – optional) a prior alignment preference 𝑯.

▪ Find: alignment/similarity matrix 𝑺

▪ An Illustrative Example

𝑺

Given Find
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Prob. Def: On-query Attributed Network Alignment

▪ Given:

– (1) two attributed networks G1 = {𝑨1, 𝑵1 , 𝑬1} and 𝐺2 =

𝑨2, 𝑵2, 𝑬2 ;

– (2 – optional) a prior alignment preference 𝑯;

– (3) a query node-𝑎 in G1

▪ Find: a vector 𝒔𝑞 (similarities of node-𝑎 vs. all nodes in 𝐺2)

Query 

node-a

Given Find
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FINAL Formulation #1: Topological Consistency

▪ Intuition: similar node-pairs tend to have similar 

neighboring node-pairs

▪ Example: 

– large 𝑺(𝑎, 𝑥)

– large 𝑨1(𝑎, 𝑏) and 𝑨2(𝑥, 𝑦)

▪ Mathematical Details: min
𝐒

𝑺 𝑎, 𝑥 − 𝑺 𝑏, 𝑦 2𝑨1 𝑎, 𝑥 𝑨2(𝑏, 𝑦)

large 𝑺 𝑏, 𝑦
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FINAL Formulation #2: Node Attribute Consistency

▪ Intuition: similar node-pairs share same node attributes

▪ Example: 

– large 𝑺(𝑎, 𝑥) node-𝑎 and node-𝑥 share same node attribute

▪ Mathematical Details: if 𝑵1 𝑎, 𝑎 = 𝑵2 𝑥, 𝑥 and 𝑵1 b, b = 𝑵2 y, y , 

min
𝐒

𝑺 𝑎, 𝑥 − 𝑺 𝑏, 𝑦 2𝑨1 𝑎, 𝑥 𝑨2(𝑏, 𝑦)
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▪ Intuition: similar node-pairs connect to their neighbor-pairs 

via same edge attributes

▪ Example:

– large 𝑺(𝑎, 𝑥)

– large 𝑺(𝑏, 𝑦)

▪ Mathematical Details: if 𝑬1 𝑎, 𝑏 = 𝑬2 𝑥, 𝑦 ,

min
𝐒

𝑺 𝑎, 𝑥 − 𝑺 𝑏, 𝑦 2𝑨1 𝑎, 𝑥 𝑨2(𝑏, 𝑦)

edge (𝑎, 𝑏) and (𝑥, 𝑦) share same attribute

FINAL Formulation #3: Edge Attribute Consistency
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Putting everything together

▪ Objective Function:

▪ 𝐟 𝐱, 𝒂 :

– ‘joint degree’ of node-𝑎 and node-𝑥

– normalization to make the optimization problem convex

▪ Generalization: 

– replacing 𝕀 ∙ by an attribute similarity function

– can handle numerical attributes on nodes and/or edges. 

min
𝐒

𝐽 𝑺 = 

𝑎,𝑏,𝑥,𝑦

𝑺 𝑥, 𝑎

𝑓 𝑥, 𝑎
−

𝑺 𝑦, 𝑏

𝑓 𝑦, 𝑏

2

𝑨1 𝑎, 𝑏 𝑨2 𝑥, 𝑦

× 𝕀 𝑵1 𝑎, 𝑎 = 𝑵2 𝑥, 𝑥 𝕀 𝑵1 𝑏, 𝑏 = 𝑵2 𝑦, 𝑦

× 𝕀 𝑬1 𝑎, 𝑏 = 𝑬2 𝑥, 𝑦

#1. Topology Consistency

#2. Node Attribute Consistency

#3. Edge Attribute Consistency
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FINAL Formulation: Matrix Form 

▪ Matrix-Form Objective Function

– 𝑾 = 𝑵 𝑬⊙ 𝑨1 ⊗𝑨2 𝑵, i.e., the attributed Kronecker product

– 𝑫 is the degree matrix of 𝑾

෪𝑾 = 𝑫−
1

2W𝑫−
1

2 is the symmetrically normalization of 𝑾

min
𝑺

𝐽 𝑺 = min
𝒔



𝑣,𝑤

𝒔 𝑣

𝑫 𝑣, 𝑣
−

𝒔 𝑤

𝑫 𝑤,𝑤

2

𝑾 𝑣,𝑤

= min
𝒔

𝒔𝑇 𝑰 − ෪𝑾 𝒔𝒔 = vec 𝑺
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FINAL Formulation: Matrix Form with Regularization

▪ Add a regularization term

– 𝒉 is default as a uniform vector

– 𝒉 encodes the prior knowledge of alignment preferences

– 𝒉 avoids trivial solution, e.g., optimal solution 𝒔 = 𝟎 w/o 𝒉

– teleport vector in PageRank, restart vector in RWR (on the 

attributed Kronecker product graph)

min
𝒔

𝛼𝒔𝑇 𝑰 − ෪𝑾 𝒔 + 1 − 𝛼 𝒔 − 𝒉 2
2

𝒉 = vec(H)
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Relationship with Existing Methods

▪ FINAL vs. IsoRank [Singh’08] 

– w/o attribute, FINAL = IsoRank (by a scaling factor 𝑫
1

2)

▪ FINAL vs. Random Walk Graph Kernel (RWGK) [Vishwanathan’10]

– 𝑘 𝐺1, 𝐺2 = σ𝑖 𝒒 𝑖 𝒔(𝑖), where 𝒒 is the stopping probability vector

▪ FINAL vs. SimRank (Node Proximity) [Jeh’02]

– 𝐺1 = 𝐺2 and w/o attribute, FINAL = SimRank by a scaling factor 𝑫
1

2

▪ FINAL vs. Random Walk with Restart (RWR) [Tong’06]

– 𝒔 = RWR vector (defined on the attributed Kronecker graph)
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Outline

▪Motivations

▪Q1: FINAL Formulation

▪Q2: FINAL Algorithms

▪Q3: FINAL Speed-up Computation

▪ Experimental Results

▪ Conclusions
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FINAL Solutions

▪ Obs: a convex optimization problem

▪ Benefits: a fixed-point solution converging to the global 

optimal solution

▪ Intuition: a similarity propagation to neighboring node-

pairs, which is additionally filtered by node/edge attributes

▪ Challenges: computationally VERY expensive

– Iterative solution: 𝑂 𝑚2𝑡max (due to Kronecker product)

– Closed form solution: 𝑂 𝑚6 (due to matrix inversion)

▪ Q: how to scale up and speed up?

min
𝒔

𝛼𝒔𝑇 𝑰 − ෪𝑾 𝒔 + 1 − 𝛼 𝒔 − 𝒉 2
2

𝒔 = 𝛼𝑫−
1
2𝑵vec(

𝑙=1

𝐿

𝑬2
𝑙 ⊙𝑨2 𝑸 𝑬1

𝑙 ⊙𝑨1
𝑇
) + 1 − 𝛼 𝒉

𝒔 = 𝑎෪𝑾𝒔 + 1 − 𝛼 𝒉 ֜ 𝒔 = 1 − 𝛼 𝑰 − 𝛼෪𝑾
−1
𝒉 (closed form) 
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Outline

▪Motivations

▪Q1: FINAL Formulation

▪Q2: FINAL Algorithms

▪Q3: FINAL Speed-up Computation

▪ Experimental Results

▪ Conclusions
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FINAL — Speed-up Full Alignment

▪ Obs: FINAL vs. RWGK and RWR

▪ Solution: leverage the existing fast solutions for RWGK 

and/or RWR [Kang 2012]

▪ An Example: only consider node attributes

▪ Key Idea: low rank approximation of 𝑨1 and 𝑨2

▪ Complexity: 𝑂(𝑛2𝑟4)

▪ Challenge: it is still 𝑂 𝑛2 . Can we do better?

𝒔 = 1 − 𝛼 𝑰 − 𝛼𝑫𝑁

−
1
2𝑵 𝑨1 ⊗𝑨2 𝑵𝑫𝑁

−
1
2

−1

𝒉

𝑨1 ≈ 𝑼1𝚲1𝑼1
𝑇

𝑨2 ≈ 𝑼2𝚲2𝑼2
𝑇

𝒔 ≈ 1 − 𝛼 𝑰 + 𝛼𝑫𝑁

−
1
2𝑵𝑼𝚲𝑼𝑇𝑵𝑫𝑁

−
1
2 𝒉

where 𝑼 = 𝑼1 ⊗𝑼2

𝚲 = 𝚲1 ⊗𝚲2
−1 − 𝛼𝑼𝑇𝑵𝑫𝑁

−1𝑵𝑼 −1

Sherman-

Morrison Lemma
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FINAL — Speed-up On-query Alignment

▪ Obs: only need one column, or one segment of 𝑺

▪ Key Ideas: 

– Low-rank approximation (same as for the full alignment)

– Relax the degree matrix 𝑫𝑁 = 𝑫1 ⊗𝑫2

▪ Details:

▪ Benefits: linear complexity 𝑂( 𝐾𝑟2 + 𝑝𝐾𝑟 + 𝑝2 𝑛 + 𝑚𝑟 + 𝑚𝐻𝑝 + 𝑟6)

𝑂 𝑛𝑟2 𝑂 𝑛2𝑟2

𝒔𝑎 = 1 − 𝛼 𝑯 : , 𝑎 + 𝛼 𝑫1 𝑎, 𝑎 𝑫2
−
1
2𝑵𝑎

× [ 𝑼1 𝑎, : ⊗ 𝑼2
𝚲 𝑼𝑇𝑵 𝑫1 ⊗𝑫2

−
1
2𝒉 ]

𝒈 = 𝑼𝑇𝑵 𝑫1 ⊗𝑫2
−
1
2𝒉 =

𝑖=1

𝑝



𝑘=1

𝐾

𝜎𝑖 𝑼1
𝑇𝑵1

𝑘𝑫1

−
1
2𝒗𝑖 ⊗ 𝑼2

𝑇𝑵2
𝑘𝑫2

−
1
2𝒖𝑖

𝑂(𝑛𝑟) 𝑂(𝑛𝑟)(2) SVD on matrix 

𝑯 = σ𝑖=1
𝑝

𝜎𝑖𝒖𝑖𝒗𝑖
𝑻

(1) same trick as 

for full alignment
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Outline

▪Motivations

▪Q1: FINAL Formulation

▪Q2: FINAL Algorithms

▪Q3: FINAL Speed-up Computation

▪ Experimental Results

▪ Conclusions
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Experimental Setup

▪ Datasets:

– DBLP co-author networks (nodes: 9,143 vs. 9,143)

– Douban online & offline networks (nodes: 3,906 vs. 1,118)

– Flickr & Last.fm networks (nodes: 12,974 vs. 15,436)

– Flickr & Myspace networks (nodes: 6,714 vs. 10,733)

▪ Evaluation Objectives:

– Effectiveness: one-to-one alignment accuracy

– Efficiency: running time

▪ Comparison Methods:

- 27 -

FINAL (Our Methods) Baseline Methods

 FINAL-NE (with node & edge attributes)

 FINAL-N (with node attributes)

 FINAL-E (with edge attributes)

 FINAL-N+ (speed-up FINAL-N)

 IsoRank [Singh’08]

 NetAlign [Bayati’09]

 UniAlign [Koutra’13]

 Klau’s Algorithm [Klau’09]
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R1. Effectiveness Results

Obs: attributes help improve network alignment
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R2. Quality-Speed Balance

Obs: FINAL gain a better quality-speed balance.
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R3. Scalability of FINAL-N+

Obs: FINAL-N+ has a quadratic time complexity w.r.t the 

number of nodes.
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R4. Quality-Speed of FINAL On-Query 

Obs: FINAL On-Query gains around 90% accuracy 

relative to exact FINAL-N, but more than 100 times 

faster.  
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R5. Scalability of FINAL On-Query

Obs: FINAL On-Query has a linear time complexity
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Outline

▪Motivations

▪Q1: FINAL Formulation

▪Q2: FINAL Algorithms

▪Q3: FINAL Speed-up Computation

▪ Experimental Results

▪ Conclusions
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Conclusions

▪ Attributed Network Alignment

– Q1: Formulation 

– A1: FINAL family 

– Q2: Optimality

– A2: Convex optimization problem            global optimal solution

– Q3: Scalable computation

– A3: Fast algorithms (FINAL-N+ & FINAL On-Query)

▪ Results

– FINAL outperform other baseline methods

– FINAL On-Query linear complexity

▪ More in Paper

– Proof of optimality & more experimental results 

min
𝐒

𝐽 𝑺 = 

𝑎,𝑏,𝑥,𝑦

𝑺 𝑥, 𝑎

𝑓 𝑥, 𝑎
−

𝑺 𝑦, 𝑏

𝑓 𝑦, 𝑏

2

𝑨1 𝑎, 𝑏 𝑨2 𝑥, 𝑦

× 𝕀 𝑵1 𝑎, 𝑎 = 𝑵2 𝑥, 𝑥 𝕀 𝑵1 𝑏, 𝑏 = 𝑵2 𝑦, 𝑦

× 𝕀 𝑬1 𝑎, 𝑏 = 𝑬2 𝑥, 𝑦
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