
FINAL: Fast Attributed Network Alignment

Si Zhang
Arizona State University
szhan172@asu.edu

Hanghang Tong
Arizona State University

hanghang.tong@asu.edu

ABSTRACT
Multiple networks naturally appear in numerous high-impact ap-
plications. Network alignment (i.e., finding the node correspon-
dence across different networks) is often the very first step for
many data mining tasks. Most, if not all, of the existing align-
ment methods are solely based on the topology of the underlying
networks. Nonetheless, many real networks often have rich at-
tribute information on nodes and/or edges. In this paper, we
propose a family of algorithms (FINAL) to align attributed net-
works. The key idea is to leverage the node/edge attribute infor-
mation to guide (topology-based) alignment process. We formu-
late this problem from an optimization perspective based on the
alignment consistency principle, and develop effective and scal-
able algorithms to solve it. Our experiments on real networks
show that (1) by leveraging the attribute information, our algo-
rithms can significantly improve the alignment accuracy (i.e., up
to a 30% improvement over the existing methods); (2) compared
with the exact solution, our proposed fast alignment algorithm
leads to a more than 10× speed-up, while preserving a 95% ac-
curacy; and (3) our on-query alignment method scales linearly,
with an around 90% ranking accuracy compared with our exact
full alignment method and a near real-time response time.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
Attributed network alignment; Alignment consistency; On-
query alignment

1. INTRODUCTION
Multiple networks naturally appear in many high-impact

application domains, ranging from computer vision, bioin-
formatics, web mining, chemistry to social network analy-
sis. More often than not, network alignment (i.e., to find
node correspondence across different networks) is virtually
the very first step for any data mining task in these appli-
cations. For example, by linking users from different social
network sites, we could recommend the products from one

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939766

site (e.g., eBay) to the users from another site (e.g., Face-
book) [29]. In bioinformatics, integrating different tissue-
specific protein-protein interaction (PPI) networks has led
to a significant improvement for candidate gene prioritiza-
tion [16].

Despite the extensive research on network alignment (see
Section 6 for a review), most, if not all, of those work focus
on inferring the node correspondence solely based on the
topology. For instance, IsoRank [21] propagates pairwise
topology similarities in the product graph. NetAlign uti-
lizes max-product belief propagation based on the network
topology [2]. BigAlign and UniAlign [11] aim to infer the
soft alignment based on the assumption that the adjacency
matrix of one network is a noisy permutation of another
network. A fundamental assumption behind these existing
methods is the topology consistency. That is, the same node
has a consistent connectivity structure across different net-
works (e.g., connecting to the same or similar set of the
neighbors). However, such an assumption could be easily
violated in some applications. For example, a user might be
very active on one social network site (e.g., Facebook), but
behaves more quietly on another site (e.g., LinkedIn) [11];
the same gene might exhibit dramatically different behav-
iors across different tissue-specific PPI network [16]. In these
cases, the topology-based methods could lead to sub-optimal
or even misleading alignment results.

At the same time, many real networks often have rich
accompanying attributes on the nodes and/or edges (e.g.,
demographic information of the users, the communication
types between different users), which might provide a com-
plementary solution to address the node topology consis-
tency assumption violation. Nonetheless, it remains a daunt-
ing task to align such attributed networks. To be spe-
cific, the following questions have largely remained open.
First (Q1. Formulation), it is not clear how to assimilate
node/edge attribute information into the topology-based net-
work alignment formulation. For instance, many topology-
based alignment approaches can often be formulated from
the optimization perspective, yet it is unknown what its
attributed counterpart is. Second (Q2. Algorithms), the
optimization problem behind the topology-based network
alignment is often non-convex or even NP-hard. Introduc-
ing attributes into the alignment process could only further
complicate the corresponding optimization problem. How
can we develop an effective solver for the attributed network
alignment, with a similar or comparable time complexity to
its topology-only counterpart? Third (Q3. Scalable Compu-
tation), how can we scale up the attributed network align-

ment process by taking advantage of some intrinsic proper-
ties (e.g., low-rank) of real networks? For some applications
(e.g., cross-network search), we might be interested in find-
ing similar nodes across different networks (e.g., to find sim-
ilar users on LinkedIn for a given user on Facebook). How
can we further speed up the computation for such an on-
query attributed network alignment process, without solving
the full alignment problem?

In this paper, we address the attributed network align-
ment problem, aiming to answer all these questions. The
main contributions of this paper are as follows:

1. Formulation. We formulate the attributed network
alignment from the optimization perspective. The key
idea behind the proposed formulation is to leverage the
node/edge attribute information to guide (topology-
based) alignment process based on the alignment con-
sistency principle. As a side product, our formulation
helps reveal the quantitative relationships between the
(attributed) network alignment problem and several
other network mining problems (e.g., graph kernel,
node proximity).

2. Algorithms and Analysis. We propose a family
of algorithms FINAL to solve the attributed network
alignment problem. Our analysis shows that the pro-
posed FINAL algorithms are both effective and effi-
cient - they converge to the global optima with a com-
plexity that is comparable to the topology-only coun-
terpart.

3. Computations. We further develop (1) an approxi-
mate algorithm FINAL-N+ to solve the full attributed
network alignment problem, which reduces the time
complexity from O(mn) to O(n2) (where m and n are
number of edges and nodes in the network, respec-
tively); and (2) a linear algorithm to solve the on-query
attributed network alignment, which achieves a good
quality-speed trade-off.

4. Evaluations. We perform extensive experiments to
validate the effectiveness and the efficiency of the pro-
posed algorithms. Our experimental evaluations demon-
strate that (1) our FINAL algorithms significantly im-
prove the alignment accuracy by up to 30% over the
existing methods; (2) the proposed FINAL-N+ al-
gorithm leads to a more than 10× speed-up, while
preserving a 95% accuracy compared with the exact
method; and (3) our on-query alignment method scales
linearly, with an around 90% ranking accuracy com-
pared with the exact full alignment method and a near
real-time response time.

The rest of the paper is organized as follows. Section 2
defines the attributed network alignment problem and the
on-query attributed network alignment problem. Section 3
presents the proposed optimization formulation of FINAL
and its solutions. Section 4 proposes two speed-up meth-
ods for approximate full alignment and on-query alignment.
Section 5 presents the experimental results. Related work
and conclusion are given in Section 6 and Section 7.

2. PROBLEM DEFINITIONS
Table 1 summarizes the main symbols and notations used

throughout the paper. We use bold uppercase letters for

Table 1: Symbols and Notation
Symbols Definition

G = {A,N,E} an attributed network
A the adjacency matrix of the network
N the node attribute matrix of the network
E the edge attribute matrix of the network

n1, n2 # of nodes in G1 and G2
m1, m2 # of edges in G1 and G2
K,L # of the node and edge labels
a, b node/edge indices of G1
x, y node/edge indices of G2
v, w node-pair indices of the vectorized alignment s = vec(S)
k, l node/edge label indices
I,1 an identity matrix and a vector of 1s, respectively
H n2 × n1 prior alignment preference
S n2 × n1 alignment matrix
r, p reduced ranks
α the parameter, 0 < α < 1

a = vec(A) vectorize a matrix A in column order
Q = mat(q, n2, n1) reshape vector q into a n2 × n1 matrix in column order

Ã symmetrically normalize matrix A
D = diag(d) diagonalize a vector d

⊗ Kronecker product
� element-wise matrix product

matrices (e.g., A), bold lowercase letters for vectors (e.g.,
s), and lowercase letters (e.g., α) for scalars. For matrix
indexing, we use a convention similar to Matlab’s syntax as
follows. We use A(i, j) to denote the entry at the intersec-
tion of the i-th row and j-th column of matrix A, A(i, :)
to denote the i-th row of A and A(:, j) to denote the j-th
column of A. We denote the transpose of a matrix by the
superscript T (e.g., AT is the transpose of A). We use ˜
on top to denote the symmetric normalization of a matrix

(e.g., Ã = D−1/2AD−1/2, where D is the degree matrix of
A). The vectorization of a matrix (in the column order) is
denoted by vec(.), and the resulting vector is denoted by the
corresponding bold lowercase letter (e.g., a = vec(A)).

We represent an attributed network by a triplet: G =
{A,N,E}, where (1) A is the adjacency matrix, and (2) N
and E are the node attribute matrix and the edge attribute
matrix, respectively1. The attribute of node-a corresponds
to the value of N(a, a), and E(a, b) describes the edge at-
tribute of the edge between node-a and node-b. For a given
node attribute value k, we define Nk as a diagonal matrix
with the same size as N, where Nk(a, a) = 1 if node-a has
the attribute value k and Nk(a, a) = 0 otherwise. For a
given edge attribute value l, we define El as a matrix of the
same size with E, where El(a, b) = 1 if edge (a, b) has the
attribute value l and El(a, b) = 0 otherwise.

Figure 1 presents an illustrative example. We can see
from Figure 1(a), the set of nodes (2, 3, 4 and 5) from the
first network share the exact same topology with another
set of nodes (2′, 3′, 4′ and 5′). The topology alone would
be inadequate to differentiate these two sets. On the other
hand, we can see that (1) 2, 2′, 5 and 5′ share the same
node attribute value; (2) 3, 3′, 4 and 4′ share the same
node attribute value; and (3) the two edges incident to 3
share the same edge attribute value with those incident to 4′.
These node/edge attributes could provide vital information
to establish the accurate node-level alignment (i.e., 2 aligns
to 5′, 5 aligns to 2′, 3 aligns to 4′ and 4 aligns to 3′). This
is exactly what this paper aims to address. Formally, the
attributed network alignment problem is defined as follows.

Problem 1. Attributed Network Alignment.
Given: (1) two attributed networks G1 = {A1,N1,E1}

1In this paper, we use ‘graph’ and ‘network’ interchangeably,
and ‘(categorical) attribute’ and ‘label’ interchangeably.

(a) Input Attributed Networks. (b) Matrix Representation. (c) Alignment Output.

Figure 1: An illustrative example of the attributed network alignment problem. (a): two input attributed networks. (b): the
matrix representation for attributed networks, where the upper matrices represent the adjacency matrices, and the bottom
matrices represent the node attribute (the diagonal positions) and the edge attribute (the off-diagonal entries) matrices. (c):
the desired alignment output (denoted by the red dashed lines).

and G2 = {A2,N2,E2} with n1 and n2 nodes respectively,
(2 - optional) a prior alignment preference H.

Output: the n2×n1 alignment/similarity matrix S, where
S(x, a) represents the alignment/similarity between node-a
in G1 and node-x in G2.

In the above definition, we have an optional input, to en-
code the prior knowledge of pairwise alignment preference
H, which is an n2 × n1 matrix. An entry in H reflects
our prior knowledge of the likelihood to align two corre-
sponding nodes across the two input networks. When such
prior knowledge is absent, we set all entries of H equal, i.e.,
a uniform distribution. Without loss of generality, we as-
sume that A1 and A2 share a comparable size, i.e., O(n1) =
O(n2) = O(n) and O(m1) = O(m2) = O(m). This will
also help simplify the complexity analysis in the next two
sections.

Notice that the alignment matrix S in Problem 1 is es-
sentially a cross-network node similarity matrix. In some
applications, we might be interested in finding a small num-
ber of similar nodes in one network w.r.t a query node from
the other network. For instance, we might want to find
the top-10 most similar LinkedIn users for a given Face-

book user. We could first solve Problem 1 and then return
the corresponding row or column in the alignment matrix S,
which might be computationally too costly as well as unnec-
essary. Having this in mind, we further define the on-query
attributed network alignment problem as follows:

Problem 2. On-Query Attributed Network Align-
ment.
Given: (1) two attributed networks G1 = {A1,N1,E1}

and G2 = {A2,N2,E2}, (2 -optional) a prior alignment
preference H, (3) a query node-a in G1.
Output: an n2 × 1 vector sa measuring similarities be-

tween the query node-a in G1 and all the nodes in G2 effi-
ciently.

3. TOPOLOGY MEETS ATTRIBUTES
In this section, we present our solutions for Problem 1. We

start by formulating Problem 1 as a regularized optimization
problem, and then propose effective algorithms to solve it,
followed by some theoretic analysis.

3.1 FINAL: Optimization Formulation
The key idea behind our proposed formulation lies in the

alignment consistency principle, which basically says that
the alignments between two pairs of nodes across the two

input networks should be consistent if these two pairs of
nodes themselves are “similar/consistent” with each other.
Let us elaborate this using the following example. In Fig-
ure 2, we are given two pairs of nodes: (1) node-a in G1 and
node-x in G2; and (2) node-b in G1 and node-y in G2. By the
alignment consistency principle, we require the alignment
between a and x, and that between b and y to be consis-
tent (i.e., small ‖S(x, a) − S(y, b)‖), if all of the following
conditions hold, including

C1 Topology Consistency. a and b are close neighbors in G1
(i.e., large A1(a, b)), and x, y are also close neighbors
in G2 (i.e., large A2(x, y));

C2 Node Attribute Consistency. a and x share the same
node attribute value, and so do b and y;

C3 Edge Attribute Consistency. Edge (a, b) and (x, y)
share the same edge attribute value.

The intuition behind the alignment consistency principle
is as follows. If we already know that node-a is aligned to
node-x (i.e., large S(x, a)), then their close neighbors (e.g.,
b and y) with same node attribute value should have a high
chance to be aligned with each other (i.e., large S(y, b)),
where we say that b and y are close neighbors of a and
y respectively if they are connected by the same edge at-
tribute value, with large edge weights (i.e., large A1(a, b)
and A2(x, y)). This naturally leads to the following objec-
tive function which we wish to minimize in terms of the
alignment matrix S:

J1(S) =
∑

a,b,x,y

[
S(x, a)√
f(x, a)

− S(y, b)√
f(y, b)

]2 A1(a, b)A2(x, y)︸ ︷︷ ︸
C1: Topology Consistency

×1(N1(a, a) = N2(x, x))1(N1(b, b) = N2(y, y))︸ ︷︷ ︸
C2: Node Attribute Consistency

× 1(E1(a, b) = E2(x, y))︸ ︷︷ ︸
C3: Edge Attribute Consistency

(1)

where (1) a, b = 1, ..., n1, and x, y = 1, ..., n2; (2) 1(·) is
the indicator function, which takes 1 if the condition inside
the parenthesis is true and zero otherwise; and (3) f(·) is a
node-pair normalization function that is defined as

f(x, a) =

∑
b,y

1(E1(a, b) = E2(x, y))A1(a, b) if N1(a, a) = N2(x, x)

× A2(x, y)1(N1(b, b) = N2(y, y))

1 otherwise

(2)

The function f(x, a) measures how many (weighted) neighbor-
pairs a and x have that (1) share the same node attribute

value between themselves (e.g., b and y), and (2) connect to
a and x via the same edge attribute value, respectively.

Notice that the indicator function 1(·) reflects whether
the two input nodes/edges share the same attribute value2,
we factorize it as follows

1(N1(a, a) = N2(x, x)) =

K∑
k=1

Nk
1(a, a)Nk

2(x, x)

1(E1(a, b) = E2(x, y)) =

L∑
l=1

El
1(a, b)El

2(x, y)

(3)

Substitute Eq. (3) into Eq. (1) and Eq. (2), we have

J1(S) =
∑

a,b,x,y

[
S(x, a)√
f(x, a)

−
S(y, b)√
f(y, b)

]
2

K∑
k,k′=1

L∑
l=1

N
k
1 (a, a)N

k
2 (x, x)

×A1(a, b)E
l
1(a, b)A2(x, y)E

l
2(x, y)N

k′
1 (b, b)N

k′
2 (y, y) (4)

and for nodes with the same attribute value, i.e., N1(a, a) =

N2(x, x)

f(x, a) =
∑
b,y

K∑
k=1

L∑
l=1

Nk
1(b, b)Nk

2(y, y)El
1(a, b)El

2(x, y)

×A1(a, b)A2(x, y)

(5)

Next, we present an equivalent matrix form of J1, which is
more convenient for the following algorithm description and
the theoretic proof. By vectorizing the alignment matrix
S (i.e., s = vec(S)), and with the notation of element-wise
product and Kronecker product, Eq. (1) can be re-written
as

J1(s) =
∑
v,w

[
s(v)√
D(v, v)

− s(w)√
D(w,w)

]2W(v, w)

=sT (I− W̃)s

(6)

where v = n2(a−1)+x, w = n2(b−1)+y, N =
∑K

k=1 Nk
1⊗

Nk
2 , E =

∑L
l=1 El

1 ⊗ El
2 and W = N[E� (A1 ⊗A2)]N.

W̃ = D−
1
2 WD−

1
2 is the symmetric normalized matrix of

W. The diagonal degree matrix D of W is defined as

D = diag(

K∑
k,k′=1

L∑
l=1

(Nk
1(El

1�A1)Nk′
1 1)⊗ (Nk

2(El
2�A2)Nk′

2 1))

Note that some diagonal elements in D could be zero (e.g.,
D(v, v) = 0). For such elements, we define the correspond-

ing D(v, v)−1/2 , 0.
Putting everything together, our proposed optimization

problem can be stated as follows.

argmins J(s) = αsT (I− W̃)s + (1− α) ‖ s− h ‖2F (7)

where ‖ · ‖F denotes the Frobenius norm, and α is the reg-
ularization parameter. Notice that compared with J1, we
have an additional regularization term ‖s − h‖2F to reflect
the prior alignment preference, where h = vec(H). When
no such prior information is given, we set h as a uniform
column vector. From the optimization perspective, this ad-
ditional regularization term would also help prevent a trivial
solution of J1 with a zero alignment matrix S.

3.2 FINAL: Optimization Algorithms
The objective function in Eq. (7) is essentially a quadratic

function w.r.t. s. We seek to find its fixed-point solution by
setting its derivative to be zero

∂J(s)

∂s
= 2(I− αW̃)s + 2(1− α)h = 0

2We remark that by replacing the indicator function 1(·) by
an attribute value similarity function, the proposed formu-
lation can be naturally generalized to handle the numerical
attributes on nodes and/or edges.

Figure 2: An illustration of alignment consistency.

which leads to the following equation

s = αW̃s + (1− α)h

= αD−
1
2 N(E� (A1 ⊗A2))ND−

1
2 s + (1− α)h

(8)

We could directly develop an iterative algorithm based on
Eq. (8). However, such an iterative procedure involves the
Kronecker product between A1 and A2 whose time com-
plexity is O(m2).

In order to develop a more efficient algorithm, thanks to
a key Kronecker product property (i.e., vec(ABC) = (CT ⊗
A)vec(B)), we re-write Eq. (8) as follows

s = αD−
1
2 Nvec(

L∑
l=1

(El
2�A2)Q(El

1�A1)T)+(1−α)h (9)

where Q is an n2 × n1 matrix reshaped by q = ND−
1
2 s in

column order, i.e., Q = mat(q, n2, n1). We can show that
Eq. (8) and Eq. (9) are equivalent with each other (detailed
proofs are omitted due to space). The advantage of Eq. (9)
is that it avoids the expensive matrix Kronecker product,
which leads to a more efficient iterative algorithm FINAL-
NE (summarized in Algorithm 1).

Algorithm 1 FINAL-NE: Attributed Network Alignment.

Input: (1) G1 = {A1,N1,E1} and G2 = {A2,N2,E2}, (2) op-
tional prior alignment preference H, (3) the regularization
parameter α, and (4) the maximum iteration number tmax.

Output: the alignment matrix S between G1 and G2.
1: Construct degree matrix D and node attribute matrix N;
2: Initiate the alignment s = h = vec(H), and t = 1;
3: while t ≤ tmax do

4: Compute vector q = ND−
1
2 s;

5: Reshape q as Q = mat(q, n2, n1);
6: Initiate an n2 × n1 zero matrix T;
7: for l = 1→ L do
8: Update T← T + (El

2 �A2)Q(El
1 �A1)T ;

9: end for

10: Update s← αD−
1
2 Nvec(T) + (1− α)h;

11: Set t← t+ 1;
12: end while
13: Reshape s to S = mat(s, n2, n1).

Variants of FINAL-NE.
Our proposed FINAL-NE algorithm assumes that the in-

put networks have both node and edge attributes. It is worth
pointing out that it also works when the node and/or the
edge attribute information is missing.

First, when only node attributes are available, we can set
all entries in the edge attribute matrix E to 1 where an edge
indeed exists. The intuition is that we treat all the edges
in the networks to share a common edge attribute value. In
this case, the fixed-point solution in Eq. (8) becomes

s = αD
− 1

2
N WND

− 1
2

N s + (1− α)h

= αD
− 1

2
N N(A1 ⊗A2)ND

− 1
2

N s + (1− α)h
(10)

where DN = diag(
∑K

k,k′=1(Nk
1A1N

k′
1 1)⊗ (Nk

2A2N
k′
2 1)) de-

notes the degree matrix of WN . Similar to Eq. (9), we can

use the vectorization operator to accelerate the computa-
tion. We refer to this variant as FINAL-N, and omit the
detailed algorithm description due to space.

Second, when only the edge attributes are available, we
treat all nodes to share one common node attribute value
by setting N to be an identity matrix. In this case, the
fixed-point solution in Eq. (8) becomes

s = αD
− 1

2
E (E� (A1 ⊗A2))D

− 1
2

E s + (1− α)h (11)

where DE = diag(
∑L

l=1[(El
1 �A1)1] ⊗ [(El

2 �A2)1]). Again,
we omit the detailed algorithm description due to space, and
refer to this variant as FINAL-E.

Finally, if neither the node attributes nor the edge at-
tributes are available, Eq. (8) degenerates to

s = αD
− 1

2
U (A1 ⊗A2)D

− 1
2

U s + (1− α)h (12)

where DU = D1 ⊗D2, D1 and D2 are the degree matrix
of A1 and A2 respectively. This variant is referred to as
FINAL-P.

3.3 Proofs and Analysis
In this subsection, we first analyze the convergency, the

optimality and the complexity of our FINAL algorithms.
Due to the space limit, we only present the results for the
most general case (i.e., FINAL-NE). Then we analyze the
relationships between FINAL and several classic graph min-
ing problems.

We start with Theorem 1, which says the proposed FINAL-
NE algorithm converges to the global optimal solution of
Eq. (7).

Theorem 1. Convergency and Optimality of FINAL-
NE. Algorithm 1 converges to the closed-form global mini-

mal solution of J(s): s = (1− α)(I− αW̃)−1h.

Proof. To prove the convergency of Eq. (8), we first

show the eigenvalues of αW̃ are in (−1, 1). Since W̃ is

similar to the stochastic matrix WD−1 = D
1
2 W̃D−

1
2 , the

eigenvalues of W̃ are within [−1, 1]. Since 0 < α < 1, the

eigenvalues of αW̃ are in (−1, 1).
We denote the alignment vector s in the t-th iteration as

s(t). We have that

s(t) = αtW̃th + (1− α)

t−1∑
i=0

αiW̃ih

Since the eigenvalues of αW̃ are in (−1, 1), we have that
lim

t→+∞
αtW̃t = 0 and lim

t→+∞

∑t−1
i=0 α

iW̃ i = (I − αW̃)−1. Putting

these together, we have that

s = lim
t→+∞

s(t) = (1− α)(I− αW̃)−1h

Next, we prove that the above result is indeed the global
minimal solution of the objective function defined in Eq. (7).
We prove this by showing that J(s) in Eq. (7) is convex.
To see this, we have that the Hessian matrix of Eq. (7) is

O2J = 2(I − αW̃). By the Weyl’s inequality theorem [4],

all eigenvalues of 2(I − αW̃) are greater than 0. In other
words, we have that O2J is positive definite. Therefore,
the objective function defined in Eq. (7) is convex, and its
fixed-point solution by Algorithm 1 corresponds to its global
minimal solution, which completes the proof.

The time and space complexity of Algorithm 1 are summa-
rized in Lemma 1. Notice that such a complexity is compa-
rable to the complexity of topology-alone network alignment
methods, such as IsoRank [21]. In the next section, we will
propose an even faster algorithm.

Lemma 1. Complexity of FINAL-NE. The time com-
plexity of Algorithm 1 is O(Lmntmax + LK2n2), and its
space complexity is O(n2). Here, n and m are the orders
of the number of nodes and edges of the input networks, re-
spectively; K,L denote the number of unique node and edge
attributes respectively, and tmax is the maximum iteration
number.

Proof. Omitted for space.

Finally, we analyze the relationships between the proposed
FINAL algorithms and several classic graph mining prob-
lems. Due to the space limit, we omit the detailed proofs
and summarize the major findings as follows.

A - FINAL vs. Node Proximity.
An important (single) network mining task is the node

proximity, i.e., to measure the proximity/similarity between
two nodes on the same network. By ignoring the node/edge
attributes and setting A1 = A2, our FINAL algorithms, up
to a scaling operation D1/2, degenerate to SimRank [12] - a
prevalent choice for node proximity. Our FINAL algorithms
are also closely related to another popular node proximity
method, random walk with restart [24]. That is, Eq. (8)
can be viewed as random walk with restart on the attributed
Kronecker graph with h being the starting vector. Note that
neither the standard SimRank nor random walk with restart
considers the node or edge attribute information.

B - FINAL vs. Graph Kernel.
The alignment result s by our FINAL algorithms is closely

related to the random walk based graph kernel [25]. To be
specific, if k(G1,G2) is the random walk graph kernel between
the two input graphs and p is the stopping vector, we can
show that k(G1,G2) = pT s. This intuitively makes sense,
as we can view the graph kernel/similarity as the weighted
aggregation (by the stopping vector p) over the pairwise
cross-network node similarities (encoded by the alignment
vector s). We also remark that in the original random walk
graph kernel [25], it mainly focuses on the edge attribute
information.

C - FINAL vs. Existing Network Alignment Methods.
If we ignore all the node and edge attribute information,

our FINAL-P algorithm is equivalent to IsoRank [21] by
scaling the alignment result and alignment preference by
D1/2. We would like to point out that such a scaling opera-
tion is important to ensure the convergence of the iterative
procedure. Recall that the key idea behind our optimiza-
tion formulation is the alignment consistency. When the
attribute information is absent, the alignment consistency
principle is closely related to the concept of “squares” be-
hind NetAlign algorithm [2]. Like most, if not all of the,
existing network alignment algorithms, the node or the edge
attribute information is ignored in IsoRank and NetAlign.

We remark that these findings are important in the follow-
ing two aspects. First, they help establish a quantitative re-
lationship between several, seemingly unrelated graph min-
ing problems, which might in turn help better understand
these existing graph mining problems. Second, these find-
ings also have an important algorithmic implication. Take
SimRank as an example, it was originally designed for plain
graphs (i.e., without attributes), and was formulated from
random walk perspective and it is not clear what the algo-
rithm tries to optimize. By setting G1 = G2 and ignoring
the attribute information, our objective function in Eq. (7)

provides a natural way to interpret SimRank from an opti-
mization perspective. By setting G1 = G2 alone (i.e., keeping
the attribute information), our FINAL algorithms can be di-
rectly used to measure node proximity on an attributed net-
work. Finally, our upcoming FINAL On-Query algorithm
also naturally provides an efficient way (i.e., with a linear
time complexity) for on-query SimRank with or without at-
tribute information (i.e., finding the similarity between a
given query node and all the remaining nodes in the same
network).

4. SPEED-UP COMPUTATION
In this section, we address the computational issue. To be

specific, we will focus on two scenarios. First, to solve Prob-
lem 1, our proposed FINAL algorithms in Section 3 have a
time complexity of O(mn), where we have dropped the lower
order terms. We will propose an effective approximate algo-
rithm that reduces the time complexity to O(n2). Second,
for Problem 2, solving the full alignment problem not only
still requires O(n2) time, but also is unnecessary, as we es-
sentially only need a column or a row from the alignment
matrix S. To address this issue, we will propose an effective
algorithm for Problem 2 with a linear time complexity. For
presentation clarity, we restrict ourselves to the case where
there is only node attribute information, although our pro-
posed strategies can be naturally applied to the more general
case where we have both node and edge attributes.

4.1 Speed-up FINAL-N
According to Theorem 1, the alignment vector s in FINAL-

N converges to its closed-form solution as follows.

s = (1− α)(I− αW̃N)−1h

= (1− α)(I− αD
− 1

2
N N(A1 ⊗A2)ND

− 1
2

N)−1h
(13)

The key idea to speed up FINAL-N is to efficiently ap-
proximate such a closed-form solution. To be specific, we
first approximate the two adjacency matrices by top-r eigen-
value decomposition: A1 = U1Λ1U

T
1 and A2 = U2Λ2U

T
2 .

Then the rank-r approximation of WN can be defined as
follows

ŴN = N[(U1Λ1U
T
1)⊗ (U2Λ2U

T
2)]N

= N(U1 ⊗U2)(Λ1 ⊗Λ2)(UT
1 ⊗UT

2)N
(14)

Substitute Eq. (14) into Eq. (13), we can approximate the
alignment vector s as

s ≈(1− α)[I− αD
− 1

2
N NU(Λ1 ⊗Λ2)UT ND

− 1
2

N]−1h

=(1− α)(I + αD
− 1

2
N NUΛUT ND

− 1
2

N)h

(15)

where U = U1 ⊗U2, and Λ is an r2 × r2 matrix computed
by Sherman-Morrison Lemma [18]: Λ = [(Λ1 ⊗ Λ2)−1 −
α(UT

1 ⊗UT
2)ND−1

N N(U1 ⊗U2)]−1.
Based on Eq. (15), our proposed FINAL-N+ algorithm

is summarized in Algorithm 2. The time complexity of
FINAL-N+ is summarized in Lemma 2. Notice that we
often have r � n, m � n2 and K � n. Therefore, com-
pared with FINAL-N, FINAL-N+ is much more efficient
in time complexity.

Lemma 2. Time Complexity of FINAL-N+. FINAL-
N+ takes O(n2r4+Kn2) in time ,where n is the order of the
number of nodes, r is the rank of eigenvalue decomposition
and K is the number of node attributes.

Proof. Omitted for space.

Algorithm 2 FINAL-N+: Low-Rank Approximation of
FINAL-N.
Input: (1) G1 = {A1,N1} and G2 = {A2,N2}, (2) optional

prior alignment preference H, (3) the regularization parame-
ter α, and (4) the rank of eigenvalue decomposition r.

Output: approximate alignment matrix S between G1 and G2.
1: Construct degree matrix DN and node attribute matrix N;
2: Construct alignment preference vector h = vec(H);
3: Eigenvalue decomposition U1Λ1UT

1 ← A1, U2Λ2UT
2 ← A2

4: Compute U = U1 ⊗U2;

5: Compute Λ = [(Λ1 ⊗Λ2)−1 − αUT ND−1
N NU]−1;

6: Compute s by Eq. (15);
7: Reshape vector s to S = mat(s, n2, n1).

4.2 Proposed Solution for Problem 2
In Problem 2, we want to find an n2 × 1 vector sa which

measures the similarities between the query node-a in G1 and
all the n2 nodes in G2 (i.e., cross-network similarity search).
It is easy to see that sa is essentially the a-th column of the
alignment matrix S, or equivalently a certain portion of the
alignment vector s, i.e.,

sa = S(:, a) = s(v : w)

where v = (a− 1)n2 + 1 and w = an2.
However, if we call FINAL-N or FINAL-N+ to find S

(or s) and then return the ranking vector sa, it would take
at least O(n2) time. Next, we propose an approximate algo-
rithm (FINAL On-Query) which directly finds the ranking
vector sa in linear time, without solving the full alignment
matrix S.

We first relax the degree matrix DN to its upper-bound
D̂N = D1 ⊗ D2. There are two reasons for taking such a
relaxation. First, it would take O(n2) time to compute the

DN matrix directly. On the other hand, D̂N can be indi-
rectly expressed by the Kronecker product between D1 and
D2, each of which only takes O(m) time. Second, since D̂N

is an upper-bound of the DN matrix, such a relaxation will
not affect the convergence of FINAL-N. By this relaxation,
the fixed-point solution in Eq. (10) can be approximated as

s = αND̂
− 1

2
N (A1 ⊗A2)D̂

− 1
2

N Ns + (1− α)h (16)

where D̂N = D1 ⊗D2.
By a similar procedure in FINAL-N+, the low-rank ap-

proximate solution for s is
s ≈ (1− α)h + α(1− α)D̂

− 1
2

N NUΛ̂UTND̂
− 1

2
N h (17)

where Λ̂ = [(Λ1 ⊗Λ2)−1 − αUTND̂−1
N U]−1.

Since both D̂N and N are diagonal matrices, the ranking
vector for node-a is

sa =(1− α)[h(v : w) + α[D̂
− 1

2
N NUΛ̂UT ND̂

− 1
2

N h](v : w)]

=(1− α)[H(:, a) + α[(D1(a, a)D2)−
1
2 (

K∑
k=1

Nk
1(a, a)Nk

2)]

×[(U1(a, :)⊗U2)︸ ︷︷ ︸
O(nr2)

Λ̂︸︷︷︸
O(n2r4+r6)

UT ND̂
− 1

2
N h︸ ︷︷ ︸

O(n2r2)

] (18)

Notice that Eq. (18) still needs O(n2) time due to the
last two terms. We reduce the time cost for computing g =

UTND̂
− 1

2
N h as follows. First, we take a rank-p singular value

decomposition (SVD) on H, i.e., H =
∑p

i=1 σiuiv
T
i . Then,

by the vectorization operator, we have that

g =

p∑
i=1

K∑
k=1

σi(

O(nr)︷ ︸︸ ︷
UT

1 Nk
1D
− 1

2
1 vi)⊗ (

O(nr)︷ ︸︸ ︷
UT

2 Nk
2D
− 1

2
2 ui)︸ ︷︷ ︸

O(nr+r2)=O(nr)

(19)

We can see that the time cost for Eq. (19) is reduced to
O(pKrn), which is linear w.r.t the number of nodes n.

We reduce the time cost for computing Λ̂ by reformulating
as follows, whose time complexity is O(Knr2 +Kr4 + r6)

Λ̂ = [(Λ1 ⊗Λ2)−1︸ ︷︷ ︸
O(r2)

−α
K∑

k=1

(

O(nr2)︷ ︸︸ ︷
UT

1 Nk
1D−1

1 U1)⊗ (

O(nr2)︷ ︸︸ ︷
UT

2 Nk
2D−1

2 U2)︸ ︷︷ ︸
O(nr2+r4)

]−1

(20)
Putting everything together, the ranking vector of node-a

now becomes

sa =(1− α)H(:, a) + α(1− α)[

O(n)︷ ︸︸ ︷
(D1(a, a)D2)−

1
2

O(Kn)︷ ︸︸ ︷
K∑

k=1

Nk
1(a, a)Nk

2]

×[(U1(a, :)⊗U2)︸ ︷︷ ︸
O(nr2)

Λ̂︸︷︷︸
O(Knr2+Kr4+r6)

g︸︷︷︸
O(pKnr)

] (21)

Based on Eq. (21), our proposed FINAL On-Query algo-
rithm is summarized in Algorithm 3. The time complexity
of FINAL On-Query is summarized in Lemma 3. Notice
that we often have r, p � n, mH � m � n2 and K � n.
FINAL On-Query has a linear time complexity w.r.t the
size of the input network, which is much more scalable than
both FINAL-N and FINAL-N+.

Algorithm 3 FINAL On-Query: Approximate On-Query
Algorithm for Node Attributed Networks.

Input: (1) G1 = {A1,N1} and G2 = {A2,N2}, (2) optional
prior alignment preference H, (3) the regularization parame-
ter α, (4) the rank of eigenvalue decomposition r, and (5) the
rank of SVD for H p.

Output: approximate ranking vector sa between node-a in G1
and all nodes in G2.
Pre-Compute:

1: Compute degree matrices D1 and D2;

2: Compute Da = D1(a, a)D2, and Na =
∑K

k=1 Nk
1(a, a)Nk

2 ;

3: Rank r eigenvalue decomposition U1Λ1UT
1 ← A1;

4: Rank r eigenvalue decomposition U2Λ2UT
2 ← A2;

5: Rank p singular value decomposition
∑p

i=1 σiuiv
T
i ← H;

6: Compute g by Eq. (19);

7: Compute Λ̂ by Eq. (20);
Online-Query:

8: Compute sa by Eq. (21).

Lemma 3. Time complexity of FINAL On-Query.
The time complexity of FINAL On-Query is O(r6 +mr+
nr2 +mHp+np2 +Knr2 +Kr4 +pKnr). where n,m are the
orders of the number of nodes and edges respectively, r, p is
the rank of eigenvalue decomposition and SVD, respectively,
K is the number of node attributes and mH is the number
of non-zero elements in H.

Proof. Omitted for brevity.

5. EXPERIMENTAL RESULTS
In this section, we present the experimental results and

analysis of our proposed algorithms FINAL. The experi-
ments are designed to evaluate the following aspects:

• Effectiveness: How accurate are our algorithms for
aligning attributed networks?

• Efficiency: How fast are our proposed algorithms?

5.1 Experimental Setup
Datasets. We evaluate our proposed algorithms on six real-
world attributed networks.

• DBLP Co-Authorship Network: This dataset contains
42,252 nodes and 210,320 edges [19]. Each author has
a feature vector which represents the number of publi-
cations of the author in each of 29 major conferences.

• Douban: This Douban dataset was collected in 2010
and contains 50k users and 5M edges [31]. Each user
has rich information, such as the location and offline
event participation. Each edge has an attribute repre-
senting whether two users are contacts or friends.

• Flickr: This dataset was collected in 2014 and con-
sists of 215,495 users and 9,114,557 friend relation-
ships. Users have detailed profile information, such
as gender, hometown and occupation, each of which
can be treated as the node attributes [30].

• Lastfm: This dataset was collected in 2013 and con-
tains 136,420 users and 1,685,524 following relation-
ships [30]. A detailed profile of some users is also pro-
vided, including gender, age and location, etc.

• Myspace: This dataset contains 854,498 users and 6
,489,736 relationships. The profile of users includes
gender, hometown and religion, etc. [30].

• ArnetMiner: ArnetMiner dataset consists of the in-
formation up to year 2013. The whole dataset has
1,053,188 nodes and 3,916,907 undirected edges [30].

Based on these datasets, we construct the following five
alignment scenarios for evaluations.
S1. DBLP vs. DBLP. We extract a subnetwork with 9,143
users/nodes from the original dataset, together with their
publications in each conference. We randomly permute this
subnetwork with noisy edge weights and treat it as the sec-
ond network. We choose the most active conference of a
given author as the node attribute, i.e., the conference with
the most publications. We construct the prior alignment
preference H based on the node degree similarity. For this
scenario, the prior alignment matrix H alone leads to a very
poor alignment result, with only 0.6% one-to-one alignment
accuracy.
S2. Douban Online vs. Douban Offline. We construct an
alignment scenario for Douban dataset in the same way as
[31]. We construct the offline network according to users’
co-occurrence in social gatherings. We treat people as (1)
‘contacts’ of each other if they participate in the same of-
fline events more than ten times but less than twenty times,
and (2) ‘friends’ if they co-participate in more than twenty
social gatherings. The constructed offline network has 1,118
users and we extract a subnetwork with 3,906 nodes from
the provided online network that contains all these offline
users. We treat the location of a user as the node attribute,
and ‘contacts’/‘friends’ as the edge attribute. We use the
degree similarity to construct the prior alignment prefer-
ence H. The prior alignment matrix H alone leads to 7.07%
one-to-one alignment accuracy.
S3. Flickr vs. Lastfm. We have the partial ground-truth
alignment for these two datasets [30]. We extract the sub-
networks from them that contain the given ground-truth

nodes. The two subnetworks have 12,974 nodes and 15,436
nodes, respectively. We consider the gender of a user as
node attribute. For those users with the missing informa-
tion of gender, we treat them as ‘unknown’. Same as [30],
we sort nodes by their pagerank scores and label 1% high-
est nodes as ‘opinion leaders’, the next 10% nodes as ‘middle
class’ and remaining nodes as ‘ordinary users’. Edges are at-
tributed by the level of people they connect to (e.g., leader
with leader). We use the username similarity as the prior
alignment preference by the Jaro-Winkler distance [6]. The
username similarity alone can correctly align 61.50% users.
S4. Flickr-Myspace. Same as S3, we have the partial ground-
truth alignment for these two datasets. We extract two
subnetworks that contain these ground-truth nodes. The
subnetwork of Flickr has 6,714 nodes and the subnetwork
of Myspace has 10,733 nodes. We use the same way as
S3 for node attributes, edge attributes and the prior align-
ment preference. The username similarity alone can cor-
rectly align 61.80% users.
S5. ArnetMiner-ArnetMiner. We use the same method as
S1 to construct the alignment scenario as well as the prior
alignment preference. This scenario contains the largest net-
works, and therefore is used for efficiency evaluations.
Comparison Methods. For the proposed FINAL algo-
rithms, we test the following variants, including (1) FINAL-
NE with both node and edge attributes; (2) FINAL-N with
node attributes only; (3) FINAL-E with edge attributes
only; (4) FINAL-N+, a low-rank based approximate al-
gorithm of FINAL-N. We compare them with the follow-
ing existing network alignment algorithms including (1) Iso-
Rank [21], (2) NetAlign [2], (3) UniAlign [11] and (4) Klau’s
Algorithm [2, 9].
Machines and Repeatability. All experiments are per-
formed on a Windows machine with four 3.6GHz Intel Cores
and 32G RAM. The algorithms are programmed with MAT-
LAB using a single thread. We intend to release the source
code as well as all the non-proprietary datasets after the
paper is published.

5.2 Effectiveness Analysis
We first evaluate the impact of the permutation noise on

the alignment accuracy. We use a heuristic greedy match-
ing algorithm [10] as a post-processing step on the similarity
matrix to obtain the one-to-one alignments between the two
input networks, and then compute the alignment accuracy
with respect to the ground-truth. The results are summa-
rized in Figure 3. We have the following observations. First,
all of our proposed methods outperform the three exist-
ing alignment methods. Specifically, FINAL-NE achieves
a 20%-30% improvement in terms of the alignment accu-
racy over the existing methods (i.e., IsoRank, NetAlign and
UniAlign). Second, FINAL-N and FINAL-E both outper-
form the existing methods, yet are not as good as FINAL-
NE, suggesting that node attributes and edge attributes
might be complementary in terms of improving the align-
ment accuracy. Third, the alignment accuracy of FINAL-
N+ is very close to its exact counterpart FINAL-N (i.e.,
with a 95% accuracy compared with FINAL-N). Fourth, by
jointly considering the attributes and the topology of net-
works, our methods are more resilient to the permutation
noise. Finally, for the two networks whose topologies are
dramatically different from each other (e.g., Douban online-
offline networks), the accuracy gap between FINAL-N+ and

Noise on Weight
0 0.05 0.1 0.15 0.2

A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

FINAL-N

FINAL-E

FINAL-NE

FINAL-N+

IsoRank

NetAlign

UniAlign

Klau

(a) DBLP co-author networks.
(α = 0.8).

Noise on Weight
0 0.05 0.1 0.15 0.2

A
c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

FINAL-N

FINAL-E

FINAL-NE

FINAL-N+

IsoRank

NetAlign

UniAlign

Klau

(b) Douban online-offline net-
works. (α = 0.6).

Figure 3: (Higher is better.) Alignment accuracy vs. the
noise level in networks. (tmax = 30, r = 5).

Noise on Alignment Preference
0 0.05 0.1 0.15 0.2

A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

FINAL-N

FINAL-E

FINAL-NE

FINAL-N+

IsoRank

NetAlign

UniAlign

Klau

(a) Flickr-Lastfm networks.
Noise on Alignment Preference

0 0.05 0.1 0.15 0.2

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1

FINAL-N

FINAL-E

FINAL-NE

FINAL-N+

IsoRank

NetAlign

UniAlign

Klau

(b) Flickr-Myspace networks.

Figure 4: (Higher is better.) Alignment accuracy vs. the
noise level in H. (α = 0.3, tmax = 30, r = 5).

the existing methods is even bigger (Figure 3(b)). This is be-
cause in this case, the topology information alone (IsoRank,
NetAlign and Klau) could actually mislead the alignment
process.

Second, we evaluate the impact of the noise in the prior
alignment preference (i.e., H) on the alignment results, which
is summarized in Figure 4. As expected, a higher noise in
H has more negative impacts on the alignment accuracy for
most of the methods. Nonetheless, our FINAL algorithms
still consistently outperform all other four existing methods
across different noise levels.

5.3 Efficiency Analysis

Running Time (second)
20 200 500 1000 1500

A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

FINAL-N

FINAL-E

FINAL-NE

FINAL-N+

IsoRank

NetAlign

UniAlign

(a) DBLP co-author networks.
α = 0.8.

Running Time (second)
20 200 500 2000 3000

A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1
FINAL-N

FINAL-E

FINAL-NE

FINAL-N+

IsoRank

NetAlign

UniAlign

(b) Flickr-Lastfm networks.
α = 0.3.

Figure 5: Balance between the accuracy and the speed.
tmax = 30, r = 5.

Quality-Speed Trade-off. We first evaluate how different
methods balance the alignment accuracy and the running
time for the full network alignment problem (i.e., Prob-
lem 1). The results are summarized in Figure 5. As we
can see, the running time of our proposed exact methods
(e.g., FINAL-N, FINAL-E) is only slightly higher than
its topology-alone counterpart (i.e., IsoRank), and in the
meanwhile, they all achieve a 10%-20% accuracy improve-
ment. FINAL-N+ and UniAlign are the fastest, yet the
proposed FINAL-N+ produces a much higher alignment

Log of Time (second)
10

0
10

1
10

2
10

3

R
e

la
ti
v
e

 A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

Flickr-Myspace

Flickr-Lastfm

FINAL On-Query

FINAL-N+ Exact FINAL-N

Figure 6: Alignment accu-
racy vs. running time for
on-query alignment.

Number of Nodes
×10

4

0 0.5 1 1.5 2 2.5 3

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
)

0

200

400

600

800
r=1

r=2

r=5

r=10

r=15

Figure 7: Scalability of
FINAL-N+.

accuracy. NetAlign takes the longest running time as it in-
volves a time-consuming, greedy/max-weight matching pro-
cess during each iteration. We do not show the balance of
Klau’s Algorithm because the running time is usually several
hours which is not comparable with other methods. Overall,
FINAL-N+ achieves the best trade-off between the align-
ment accuracy and the running time.

Second, we evaluate the quality-speed trade-off for on-
query alignment problem (i.e., Problem 2). Here, we treat
the top-10 ranking results by FINAL-N as the ground-truth,
and compare the average ranking accuracy of 500 random
nodes with two proposed approximate algorithms (FINAL-
N+ and FINAL On-Query). The results are summarized
in Figure 6. We can see, that (1) FINAL-N+ preserves
a 95% ranking accuracy, with a more than 10× speedup
over FINAL-N, (2) FINAL On-Query preserves an about
90% ranking accuracy, and it is 100× faster than the exact
FINAL-N.
Scalability. We first evaluate the scalability of FINAL-
N+, which is summarized in Figure 7. We can see that
the running time is quadratic w.r.t the number of nodes
of the input networks, which is consistent with the time
complexity results in Lemma 2. Second, we evaluate the
scalability of FINAL On-Query, for both its pre-compute
phase and online-query phase. As we can see from Figure
8, the running time is linear w.r.t the number of nodes in
both stages, which is consistent with Lemma 3. In addition,
the actual online-query time on the entire ArnetMiner data
set (with r = 10) is less than 1 second, suggesting that the
proposed FINAL On-Query method might be well suitable
for the real-time query response.

Number of Nodes in Networks
×10

5

0 2 4 6 8 10

R
u

n
n

in
g

 T
im

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60
rank=1

rank=2

rank=5

rank=10

rank=15

(a) Pre-compute phase.
Number of Nodes in Networks ×10

5

0 2 4 6 8 10

O
n
lin

e
 Q

u
e
ry

 T
im

e
 (

s
e
c
o
n
d
)

0

0.5

1

1.5

2

2.5
rank=1

rank=2

rank=5

rank=10

rank=15

(b) Online-query phase.

Figure 8: Scalability of FINAL On-Query.

6. RELATED WORK
The network alignment has attracted lots of research in-

terests with extensive literatures. It appears in numerous
domains, ranging from database schema matching [15], bioin-
formatics [21, 13, 8], chemistry [22], computer vision [7, 20],
to data mining [11, 2].

A classic alignment approach can be attributed to Iso-
Rank algorithm [21], which is in turn inspired by PageRank
[17]. The original IsoRank algorithm propagates the pair-
wise node similarity in the Kronecker product graph. Sev-
eral approximate algorithms have been proposed to speed
up its computation. Kollias et al. [10] propose an efficient
method based on uncoupling and decomposition. SpaIso-
Rank modifies IsoRank to maximize the number of “squares”
for sparse networks [2]. In addition, IsoRankN [13] extends
the original IsoRank algorithm and uses a similar approach
as PageRank-Nibble [1] to align multiple networks.

Bayati et al. [3] propose a maximum weight matching al-
gorithm for graph alignment using the max-product belief
propagation [26]. Bradde et al. [5] propose another dis-
tributed message-passing algorithm based on belief prop-
agation for protein-protein interaction network alignment.
Recently, NetAlign [2] is proposed by formulating the net-
work alignment problem as an integer quadratic program-
ing problem to maximize the number of “squares”. A near-
optimal solution is obtained by finding the maximum a pos-
teriori (MAP) assignment using message-passing approach.
BigAlign formulates the bipartite network alignment prob-
lem and uses the alternating projected gradient descent to
solve it [11]. Zhang et al. solve the multiple anonymized
network alignment in two steps, i.e., unsupervised anchor
link inference and transitive multi-network matching [28].

A related problem is to identify users from multiple so-
cial networks (i.e., the cross-site user identification prob-
lem). Zafarani et al. identify users by modeling user be-
havior patterns based on human limitations, exogenous and
endogenous factors [27]. Tan et al. [23] propose a subspace
learning method, which models user relationship by a hy-
pergraph. Liu et al. propose a method to identify same
users by behavior modeling, structure consistency model-
ing and learning by multi-objective optimization [14]. COS-
NET [30] considers both local the global consistency and
uses an energy-based model to find connections among mul-
tiple heterogeneous networks.

7. CONCLUSION
In this paper, we study the attributed network alignment

problem, including the full alignment version as well as its
on-query variant. We propose an optimization-based for-
mulation based on the alignment consistency principle. We
propose a family of effective and efficient algorithms to solve
the attributed network alignment problem. In detail, we
first propose exact algorithms (FINAL) which are proved
to converge to the global optima, with a comparable com-
plexity with their topology-alone counterparts. We then
propose (1) an approximate alignment algorithm (FINAL-
N+) to further reduce the time complexity; and (2) an ef-
fective alignment algorithm (FINAL On-Query) to solve
the on-query network alignment problem with a linear time
complexity. We conduct extensive empirical evaluations on
real networks, which demonstrate that (1) by assimilating
the attribute information during the alignment process, the
proposed FINAL algorithms significantly improve the align-
ment accuracy by up to 30% over the existing methods; (2)
the proposed approximate alignment algorithm (FINAL-
N+) achieves a good balance between the running time
and the alignment accuracy; and (3) the proposed on-query
alignment algorithm (FINAL On-Query) (a) preserves an
around 90%+ ranking accuracy, (b) scales linearly w.r.t the

size of the input networks, and (c) responds in near real
time. Future work includes generalizing FINAL algorithms
to handle dynamic networks.

8. ACKNOWLEDGEMENTS
This work is partially supported by the National Science

Foundation under Grant No. IIS1017415, by DTRA under
the grant number HDTRA1-16-0017, by Army Research Of-
fice under the contract number W911NF-16-1-0168, by Na-
tional Institutes of Health under the grant number R01LM
011986, Region II University Transportation Center under
the project number 49997-33 25 and a Baidu gift. We would
like to sincerely thank Dr. Jie Tang and Dr. Yutao Zhang
for their generosity to share the datasets, and anonymous
reviewers for their insightful and constructive comments.

9. REFERENCES
[1] R. Andersen, F. Chung, and K. Lang. Local graph

partitioning using pagerank vectors. IEEE, 2006.

[2] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and
Y. Wang. Algorithms for large, sparse network
alignment problems. IEEE, 2009.

[3] M. Bayati, D. Shah, and M. Sharma. Maximum
weight matching via max-product belief propagation.
IEEE, 2005.

[4] R. Bhatia. Linear algebra to quantum cohomology:
the story of alfred horn’s inequalities. The American
Mathematical Monthly, 108(4):289–318, 2001.

[5] S. Bradde, A. Braunstein, H. Mahmoudi, F. Tria,
M. Weigt, and R. Zecchina. Aligning graphs and
finding substructures by a cavity approach. EPL
(Europhysics Letters), 89(3):37009, 2010.

[6] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string metrics for matching names and
records. 2003.

[7] D. Conte, P. Foggia, C. Sansone, and M. Vento.
Thirty years of graph matching in pattern recognition.
International journal of pattern recognition and
artificial intelligence, 18(03):265–298, 2004.

[8] S. Hashemifar and J. Xu. Hubalign: an accurate and
efficient method for global alignment of
protein–protein interaction networks. Bioinformatics,
30(17):i438–i444, 2014.

[9] G. W. Klau. A new graph-based method for pairwise
global network alignment. BMC bioinformatics,
10(Suppl 1):S59, 2009.

[10] G. Kollias, S. Mohammadi, and A. Grama. Network
similarity decomposition (nsd): A fast and scalable
approach to network alignment. Knowledge and Data
Engineering, IEEE Transactions on,
24(12):2232–2243, 2012.

[11] D. Koutra, H. Tong, and D. Lubensky. Big-align: Fast
bipartite graph alignment. In Data Mining (ICDM),
2013 IEEE 13th International Conference on, pages
389–398. IEEE, 2013.

[12] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and
T. Wu. Fast computation of simrank for static and
dynamic information networks. ACM, 2010.

[13] C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger.
Isorankn: spectral methods for global alignment of
multiple protein networks. Bioinformatics,
25(12):i253–i258, 2009.

[14] S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan.
Hydra: Large-scale social identity linkage via
heterogeneous behavior modeling. ACM, 2014.

[15] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. IEEE, 2002.

[16] J. Ni, H. Tong, W. Fan, and X. Zhang. Inside the
atoms: ranking on a network of networks. In
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 1356–1365. ACM, 2014.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
1999.

[18] W. W. Piegorsch and G. Casella. Erratum: inverting a
sum of matrices. SIAM review, 32(3):470, 1990.

[19] A. Prado, M. Plantevit, C. Robardet, and J.-F.
Boulicaut. Mining graph topological patterns: Finding
covariations among vertex descriptors. Knowledge and
Data Engineering, IEEE Transactions on,
25(9):2090–2104, 2013.

[20] C. Schellewald and C. Schnörr. Probabilistic subgraph
matching based on convex relaxation. Springer, 2005.

[21] R. Singh, J. Xu, and B. Berger. Global alignment of
multiple protein interaction networks with application
to functional orthology detection. Proceedings of the
National Academy of Sciences, 105(35):12763–12768,
2008.

[22] A. Smalter, J. Huan, and G. Lushington. Gpm: A
graph pattern matching kernel with diffusion for
chemical compound classification. IEEE, 2008.

[23] S. Tan, Z. Guan, D. Cai, X. Qin, J. Bu, and C. Chen.
Mapping users across networks by manifold alignment
on hypergraph. 2014.

[24] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random
walk with restart and its applications. 2006.

[25] S. V. N. Vishwanathan, N. N. Schraudolph,
R. Kondor, and K. M. Borgwardt. Graph kernels. The
Journal of Machine Learning Research, 11:1201–1242,
2010.

[26] J. S. Yedidia, W. T. Freeman, and Y. Weiss.
Understanding belief propagation and its
generalizations. Exploring artificial intelligence in the
new millennium, 8:236–239, 2003.

[27] R. Zafarani and H. Liu. Connecting users across social
media sites: a behavioral-modeling approach. In
Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 41–49. ACM, 2013.

[28] J. Zhang and S. Y. Philip. Multiple anonymized social
networks alignment. Network, 3(3):6, 2015.

[29] Y. Zhang. Browser-oriented universal cross-site
recommendation and explanation based on user
browsing logs. ACM, 2014.

[30] Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu.
Cosnet: Connecting heterogeneous social networks
with local and global consistency. ACM, 2015.

[31] E. Zhong, W. Fan, J. Wang, L. Xiao, and Y. Li.
Comsoc: adaptive transfer of user behaviors over
composite social network. ACM, 2012.

