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⋯

C1

C2 C3 𝓖𝟐

B1

B2 B3 B4

B5

𝓖𝟑

A1

A2 A3 A4
𝓖𝟏

𝓖𝟏 𝓖𝟐 𝓖𝟑 ⋯

⋯

⋯

Graph Level

(e.g., graph similarity, 
classification, etc.)

(e.g., subgraph matching, 
cross-domain clustering, etc.)

Subgraph Level

Node Level

(e.g., network alignment, 
multi-view node classification)

We Are Here!
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Multiple Networks Are Prevalent

Online Social 
Networks
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• Multiple social networks are inter-linked

Multiple Networks: Examples

Linked by “branches”
P1
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P2

P2

“Branches”
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• Multiple transaction networks are inter-linked

• Q: How to find those “branches”?

Multiple Networks: Examples
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“Branches”
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• Find node correspondence across multiple networks

What Is Network Alignment?
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• Given: 
• a set of networks 𝒢𝑙 𝑙 ≥ 2 where 𝒢𝑙 = 𝒱𝑙 , ℰ𝑙 , 𝑨𝑙 ; 

• 𝒱𝑙 , ℰ𝑙 , 𝑨𝑙 are the nodes, edges and adjacency matrix of 𝒢𝑙;  

• prior alignment matrices {𝑯𝑙1,𝑙2} between 𝒢𝑙1 and 𝒢𝑙2.

• Find: the alignment matrices 𝑺𝑙1,𝑙2 between 𝒢𝑙1 and 𝒢𝑙2 .

Network Alignment: Prob. Def.
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Why Do We Care?
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• It solves for the permutation matrix 𝑷 that minimizes

• Can be interpreted as a quadratic assignment problem

• 𝑷 ∈ 0,1 𝑛×𝑛, 𝑷𝟏 = 𝟏, 𝟏𝑇𝑷 = 𝟏𝑇

• Need relaxations on the constraints
• Doubly stochastic relaxation

• Spectral relaxation

• Optional external information 𝑯

Related Setting: Graph Matching

𝑨2 − 𝑷𝑇𝑨1𝑷 𝐹
2 + Tr 𝑯𝑇𝑷
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Related Setting: Entity Alignment

• To align entities across knowledge graphs

Xu, Kun, et al. "Cross-lingual knowledge graph alignment via graph matching neural 
network." arXiv preprint arXiv:1905.11605 (2019).
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Traditional Methods

• Graph matching-based methods [Koutra’13, Zhang’15]

• Assumption: networks are noisy permutations of each other

• Sparse probabilistic relaxation, i.e., 0 ≤ 𝑺𝑖𝑗 ≤ 1, 𝑺 0 ≤ 𝑡

• For bipartite graphs, min
𝑷,𝑸

𝑩2 − 𝑷𝑩1𝑸 𝐹
2 [Koutra’13]

min
𝐒

𝑨2 − 𝑺𝑇𝑨1𝑺 𝐹
2

Koutra, Danai, Hanghang Tong, and David Lubensky. "Big-align: Fast bipartite graph alignment." 2013 IEEE 13th 
International Conference on Data Mining. IEEE, 2013.
Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE International Conference 
on Data Mining. IEEE, 2015.
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Traditional Methods

• Random walk-based methods (e.g., IsoRank) 
[Singh’08, Liao’09]
• Intuition: random walks on Kronecker product graph

• 𝒔 = 𝑣𝑒𝑐 𝑺 , 𝒉 = 𝑣𝑒𝑐(𝑯)

𝒔 = 𝛼 𝑨1 ⊗𝑨2 𝒔 + 1 − 𝛼 𝒉
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Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Pairwise global alignment of protein interaction networks by matching neighborhood 
topology." Annual International Conference on Research in Computational Molecular Biology. Springer, Berlin, Heidelberg, 2007.
Liao, Chung-Shou, et al. "IsoRankN: spectral methods for global alignment of multiple protein networks." Bioinformatics 25.12 (2009): i253-
i258. 12



Key Challenge #1: Complexity

• Time complexity:
• Most of existing works have an at least 𝑂 𝑛2 time complexity

• Inefficient computations for large-scale networks

• Space complexity:
• At least 𝑂 𝑛2 to store the alignment matrix

• Costly memory consumptions

• Q: How to efficiently solve network alignment?
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Key Challenge #2: Variety

• Networks have rich contextual information
• Node attributes, e.g., gender, age, etc.

• Edge attributes, e.g., relation types, etc.

• Q: How to encode contextual information to enhance 
the alignment performance?
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Key Challenge #3: Heterogeneity

• Networks appear in various sources
• Networks may capture distinct information 

• Facebook: to connect friend, family, etc. 

• LinkedIn: to connect professionals

• Same nodes have different behavior patterns

• E.g., a user is very active in Facebook but quiet in Twitter

• Q: How to handle the heterogeneity behind multi-
sourced networks?
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RoadMap

• Motivations and Background

• Part I: Recent Network Alignment Algorithms

• Part II: Network Alignment Applications

• Part III: Future Research Directions
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Overview of Part I

Collective NA Higher-Order NA Related Tasks

Part I: Recent Network 
Alignment (NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation
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Pairwise Network Alignment

• Given: two networks 𝒢1, 𝒢2 with/without attributes

• Find: the node correspondence across networks

Illustrative example of pairwise network alignment w/o attributes

𝑺
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Consistency-Based Methods

• Intuition:
• If two nodes are aligned, e.g., node-𝑎 in 𝒢1 and node-𝑥 in 𝒢2
• Then their neighbors are likely to be aligned

𝑎

𝒢1

𝑥

𝑏 𝑦

𝒢2
1.0

0.9

𝑎

𝑥𝑦

𝑏
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NetAlign: A Message Passing Method

• Key idea: to maximize the number of overlaps

𝑨1 𝑨2𝑯

𝑯𝑘𝑘′

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth 
IEEE International Conference on Data Mining. IEEE, 2009.
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NetAlign – Formulation #1 

• To maximize the # of overlaps
• Equivalent to maximizing the # of nonzeros in 𝑨

•
𝛽

2
𝒔𝑇𝑨𝒔

• 𝑨 𝑖𝑖′, 𝑗𝑗′ = 1 if
• 𝑨1 𝑖, 𝑗 = 1
• 𝑨2 𝑖′, 𝑗′ = 1
• 𝑯 𝑖, 𝑖′ > 0,𝑯 𝑗, 𝑗′ > 0

• 𝒔𝑖𝑖′𝑨 𝑖𝑖′, 𝑗𝑗′ 𝒔𝑗𝑗′ is high if

• 𝑖, 𝑖′ are likely to be aligned
• 𝑗, 𝑗′ are likely to be aligned

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth 
IEEE International Conference on Data Mining. IEEE, 2009.
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NetAlign – Formulation #2 

• Encode the prior knowledge
• 𝒔𝑇vec 𝑯 = σ𝑖𝑖′ 𝑺 𝑖, 𝑖′ 𝑯 𝑖, 𝑖′ → score from prior knowledge

• Valid matching constraints
• σ𝑖′, 𝑠.𝑡. 𝑯 𝑖,𝑖′ >0𝑺 𝑖, 𝑖′ ≤ 1

• σ𝑖, 𝑠.𝑡. 𝑯 𝑖,𝑖′ >0𝑺 𝑖, 𝑖′ ≤ 1

• 𝑺 𝑖, 𝑖′ ∈ 0,1

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth 
IEEE International Conference on Data Mining. IEEE, 2009.
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NetAlign – Factor Graph 

• Nodes: 
• Variable nodes: e.g., 

• Node pairs that form overlaps
• Function nodes: constraints

• Edges: connecting each function node to the variable 
nodes it acts on

𝑓𝑖 = ቐ
1 

𝑯 𝑖,𝑖′ >0
𝒔𝑖𝑖′ ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑔𝑖′ = ቐ
1 

𝑯 𝑖,𝑖′ >0
𝒔𝑖𝑖′ ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℎ𝑖𝑖′𝑗𝑗′ = ቊ
1 𝒔𝑖𝑖′𝑗𝑗′ = 𝒔𝑖𝑖′𝑠𝑗𝑗′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth 
IEEE International Conference on Data Mining. IEEE, 2009.
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NetAlign – Algorithm 

• Belief propagation
• Iteratively makes local and greedy decisions

• Updated by passing messages between nodes in factor graph

• Messages 𝑚𝑖𝑖′→𝑓𝑖

𝑡 , 𝑚𝑖𝑖′→𝑔
𝑖′

𝑡

• Control matching constraints

• Also contain info about term 𝛼𝒔𝑇vec 𝑯

• Messages 𝑚𝑖𝑖′→ℎ
𝑖𝑖′𝑗𝑗′

𝑡

• Agents in a square should communicate

• Term 
𝛽

2
𝒔𝑇𝑨𝒔

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth 
IEEE International Conference on Data Mining. IEEE, 2009.
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Experimental Results

Bayati, Mohsen, et al. "Algorithms for large, sparse network alignment problems." 2009 Ninth 
IEEE International Conference on Data Mining. IEEE, 2009.
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Final: Attributed Network Alignment

• Given: 
• two networks 𝒢𝑙 𝑙 = 1, 2 where 𝒢𝑙 = 𝒱𝑙 , ℰ𝑙 , 𝑨𝑙 , 𝑵𝑙 , 𝑬𝑙

and 𝑵𝑙 , 𝑬𝑙 denote the node attributes and edge attributes; 

• prior alignment matrices 𝑯 between 𝒢1 and 𝒢2.

• Find: the alignment matrix 𝑺 between 𝒢1 and 𝒢2.

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final – Formulation #1

• Topological consistency
• Intuition: similar node-pairs tend to have similar neighboring 

node-pairs

• Example: 

• Large 𝑺(𝑎, 𝑥)

• Large 𝑨1(𝑎, 𝑏) and 𝑨2(𝑥, 𝑦)
large 𝑺 𝑏, 𝑦

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final – Formulation #2 

• Node attribute consistency
• Intuition: similar node-pairs share similar node attributes

• Large 𝑺(𝑎, 𝑥) node-𝑎 and node-𝑥 share similar attributes

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final – Formulation #3

• Edge attribute consistency
• Intuition: similar node-pairs connect to their neighbor-pairs 

via similar edge attributes

• Example:

• Large 𝑺(𝑎, 𝑥)

• Large 𝑺(𝑏, 𝑦)
Edge (𝑎, 𝑏) & (𝑥, 𝑦) share 
similar attributes

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final – Overall Formulation

• Objective function

• Matrix-form objective function

min
𝐒

𝐽 𝑺 = 

𝑎,𝑏,𝑥,𝑦

𝑺 𝑥, 𝑎

𝑓 𝑥, 𝑎
−

𝑺 𝑦, 𝑏

𝑓 𝑦, 𝑏

2

𝑨1 𝑎, 𝑏 𝑨2 𝑥, 𝑦

× Φ 𝑥, 𝑎 Φ 𝑦, 𝑏 × Ψ 𝑥, 𝑦 , (𝑎, 𝑏)

#1. Topology Consistency

#2. Node Attribute Consistency #3. Edge Attribute Consistency

min
𝑺

𝐽 𝑺 = min
𝒔



𝑣,𝑤

𝒔 𝑣

𝑫 𝑣, 𝑣
−

𝒔 𝑤

𝑫 𝑤,𝑤

2

𝑾 𝑣,𝑤

= min
𝒔

𝒔𝑇 𝑰 − ෪𝑾 𝒔𝒔 = vec 𝑺
attributed Kronecker product

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final – Algorithm

• Fixed-point solution: by setting derivative to 0
• Converges to the global optimal solution

• Intuition: a similarity propagation to neighboring 
node-pairs, which is additionally calibrated by 
node/edge attributes

• Speed-up variants:
• Low-rank approximation for full alignment

• Low-rank approximation for on-query alignment

𝒔 = 𝑎෪𝑾𝒔 + 1 − 𝛼 𝒉 ֜ 𝒔 = 1 − 𝛼 𝑰 − 𝛼෪𝑾
−1
𝒉

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final – Low-Rank Approximation 
Algorithm

• If we only consider node attributes

• Key Idea: Low rank approximation of 𝑨1 and 𝑨2

• Complexity: 𝑂 𝑛6 or 𝑂(𝑚𝑛𝑡max)→ 𝑂 𝑛2𝑟4

32

𝒔 = 1 − 𝛼 𝑰 − 𝛼𝑫𝑁

−
1
2𝑵 𝑨1⊗𝑨2 𝑵𝑫𝑁

−
1
2

−1

𝒉

𝑨1 ≈ 𝑼1𝚲1𝑼1
𝑇

𝑨2 ≈ 𝑼2𝚲2𝑼2
𝑇

Sherman-Morrison 
Lemma

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.

𝒔 ≈ 1 − 𝛼 𝑰 + 𝛼𝑫𝑁

−
1
2𝑵𝑼𝚲𝑼𝑇𝑵𝑫𝑁

−
1
2 𝒉

where 𝑼 = 𝑼1 ⊗𝑼2

𝚲 = 𝚲1 ⊗𝚲2
−1 − 𝛼𝑼𝑇𝑵𝑫𝑁

−1𝑵𝑼 −1



Final – Experimental Results

Observation: attributes help improve network alignment.

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.

33



Final – Experimental Results

Observation: FINAL gains a better quality-speed balance.

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final – Experimental Results

Observation: FINAL On-Query gains around 90% accuracy 
relative to exact FINAL-N, but more than 100 times faster. 

Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.
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Final – More on Computations

• Further speed-up: from 𝑂(𝑛2) to 𝑂(𝑚)
• Key idea: indirect representation of 𝑺 [1]

• Theorem: Low-rank of 𝑨1 and 𝑨2→ low-rank of 𝑺

• Alignment quality: linear complexity w/o approximation
• Multilevel alignment (perfect interpolation theorem) [2]

• Implicit Krylov subspace methods [3]

36

𝑼𝟐

𝑴 𝑼𝟏
𝑻× ×

𝒓𝟐 × 𝒓𝟏
𝑺

[1] Zhang, Si, et al. "ineat: Incomplete network alignment." 2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017.
[2] Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
[3] Du, Boxin, and Hanghang Tong. "Fasten: Fast sylvester equation solver for graph mining." Proceedings of the 24th ACM SIGKDD 
International Conference on Knowledge Discovery & Data Mining. 2018. 



Overview of Part I

Collective NA Higher-Order NA Related Tasks

Part I: Recent Network 
Alignment (NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation
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Embedding-Based Methods

• Intuition: to learn node representations that
• Preserve structural/attribute proximity within networks

• Preserve proximity across aligned nodes 

38



IONE: Aligning Users by Network Embedding 

• Background: network embedding by LINE (2nd order)
• Compute two distributions:

• Minimize the KL divergence by omitting constant terms

p̂2(v j | vi ) =
wij

wik
kÎV

å
Empirical distribution of
neighborhood structure:

Model distribution of
neighborhood structure:

O2 = KL( p̂2(× | vi ), p2(× | vi ))
i

å = - wij log p2(v j | vi )
(i, j )ÎE

å

Tang, Jian, et al. "Line: Large-scale information network embedding." Proceedings of the 24th 
international conference on world wide web. 2015.
Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." Ijcai. 2016. 39



IONE – Within-Network Embedding

• Intuition: to preserve structure proximity

• Embedding vectors for node-𝑖
• A node vector 𝒖𝑖
• Context vectors: (1) input context 𝒖𝑖

′, (2) output context 𝒖𝑖
′′

• Objective: minimize KL divergences 

Input context 
model distribution:

Output context 
model distribution:

Empirical distributions:

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." Ijcai. 2016.
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IONE – Cross-Network Embedding

• Intuition: aligned nodes coincide in embedding space

• 𝑝𝑎 𝑣𝑖
𝑌 𝑣𝑘

𝑋 : probability that 𝑣𝑘
𝑋 and 𝑣𝑖

𝑌 are aligned

• Objective: minimize KL divergences 
• e.g., 𝑝1(𝑣𝑗

𝑌|𝑣𝑖
𝑋) vs. Ƹ𝑝1 𝑣𝑗

𝑌 𝑣𝑖
𝑋

Model distribution: 𝑝1 𝑣𝑗
𝑌 𝑣𝑘

𝑋 =
exp(𝒖𝑗

′𝑌 𝑇
𝒖𝑘
𝑋)

σ𝑘∈𝑉𝑋
exp(𝒖𝑗

′𝑌 𝑇
𝒖𝑘
𝑋)

Empirical distribution: Ƹ𝑝1 𝑣𝑗
𝑌 𝑣𝑘

𝑋 =
𝑣𝑖∈𝑉𝑌

𝑝𝑎 𝑣𝑖
𝑌 𝑣𝑘

𝑋 ×
𝑤𝑖𝑗

𝑑𝑖
𝑜𝑢𝑡

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." Ijcai. 2016.
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IONE – Model Inference

• SGD with negative sampling

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." Ijcai. 2016.

42



IONE – Experimental Results

• Dataset: Foursquare-Twitter

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." Ijcai. 2016.
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IONE – Case Study

Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." Ijcai. 2016.
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• Motivations:
• Heterogeneity across networks → Complex alignment

• Scarcity of labeled alignment → Supervised training is not 
easy

• Key questions:
• How to learn non-linear transformation for alignment?

• How to boost supervised training algorithm?

• Key idea: use deep neural network with dual-learning

DeepLink: Deep Learning for User Identity 
Linkage

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM 
2018-IEEE Conference on Computer Communications. IEEE, 2018.
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DeepLink – Network Embedding

• Key idea: pre-trained Skip-gram based embedding
• To predict the context of a center node

• Context sampling:
• Random walks from center nodes

• Objective function:
• Original: to maximize 

• With negative sampling:

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM 
2018-IEEE Conference on Computer Communications. IEEE, 2018.
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DeepLink – Neural Mapping Learning

• Goal: to learn non-linear alignment across networks

• Intuition: neural networks capture complex nonlinearity

• Key idea: use two multilayer perceptrons as mappings
• One MLP (denoted by Φ) to map from network 𝒢𝑠 to 𝒢𝑡

• Another MLP (denoted by Φ−1) for 𝒢𝑡 to 𝒢𝑠

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM 
2018-IEEE Conference on Computer Communications. IEEE, 2018.
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DeepLink – Dual Learning

• Goal: to address the lack of labeled alignment

• Components:
• Unsupervised alignment pre-training uses node embedding 

to learning two weak mapping functions Φ and Φ−1

• Supervised alignment learning uses labeled alignment to 
improve weak mapping functions

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM 
2018-IEEE Conference on Computer Communications. IEEE, 2018.
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DeepLink – Unsupervised Pre-training

• Goal: to learn self-consistent mappings

• Method: autoencoder type of architecture
• Encoder: mapping function Φ

• Decoder: mapping function Φ−1

• Objective function:
• Minimize difference between

Φ−1 Φ 𝒗𝑢 and 𝒗𝑢

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM 
2018-IEEE Conference on Computer Communications. IEEE, 2018.
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DeepLink – Supervised Learning

• Key idea: align according to some reward functions

• Method: 
• Find 𝑘-similar embeddings 𝒗′ 𝑢𝑖 in 𝒢𝑡 for mapped embeddings 

of node-𝑎 in 𝒢𝑠, i.e., 𝑢𝑖 ∈ Top(Φ 𝑣 𝑢𝑎
• Rewards:

• To maximize rewards

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM 
2018-IEEE Conference on Computer Communications. IEEE, 2018.
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DeepLink – Experimental Results

• Dataset: Foursquare-Twitter

Comparisons of alignment precision.

Observation: DeepLink achieves highest 
accuracy in top-k identity matching.

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM 
2018-IEEE Conference on Computer Communications. IEEE, 2018.
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DeepLink – Experimental Results

• Visualization of cosine similarities of randomly sampled 
anchor nodes (the more diagonalized, the better).

Observations:
• IONE disrupts the embedding 

similarities of labeled alignment 
pairs after training.

• In contrast, DeepLink still 
preserves the anchor linkage.

• Similarly for testing anchor 
nodes.

Zhou, Fan, et al. "Deeplink: A deep learning approach for user identity linkage." IEEE INFOCOM 
2018-IEEE Conference on Computer Communications. IEEE, 2018.
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Regal: Representation Learning-Based 
Graph Alignment

• Goal: unsupervised embedding for network alignment

Regal IONE

Key idea matrix 
factorization

skip-gram w/ negative 
sampling

Attributes w/ node attributes w/o attributes

Supervision unsupervised semi-supervised

Complexity sub-quadratic sub-quadratic

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 
27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal – Overview

• Node feature extraction

• Node embedding learning by matrix factorization

• Network alignment

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 
27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal – Node Feature Extraction

• Structural identity
• ℛ𝑢

𝑘 : the set of nodes exactly 𝑘 steps away from 𝑢

• 𝒅𝑢
𝑘(𝑖): the number of nodes in ℛ𝑢

𝑘 with degree of 𝑖

• 𝒅𝑢 = σ𝑖=1
𝐾 𝛿𝑘−1𝒅𝑢

𝑘 (𝛿 is the discount factor)

• Logarithmic binning: 𝒅𝑢
𝑘(𝑖) is the number of nodes 𝑢 ∈ ℛ𝑢

𝑘

such that log2 deg(𝑢) = 𝑖

• Attribute-based identity
• Node input feature vector 𝒇𝑢

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 
27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal – Cross-Network Node Similarity

• Direct computation

• Limitation: costly computation 𝑂 𝑛2 where 𝑛 = 𝑛1 + 𝑛2

• Efficient computation
• Reduce to node-landmark similarity

• ℒ: a set of 𝑝 landmark nodes chosen randomly

• Node-landmark similarity matrix: 𝑪 𝑢, 𝑣 , 𝑣 ∈ ℒ

• Landmark-landmark similarity

𝑠𝑖𝑚 𝑢, 𝑣 = exp −𝛾𝑠 𝒅𝑢 − 𝒅𝑣 2
2 − 𝛾𝑎 × 𝑑𝑖𝑠𝑡(𝒇𝑢, 𝒇𝑣)

𝑾 𝑣1, 𝑣2 = 𝑪 𝑣1, 𝑣2 , 𝑣1 ∈ ℒ

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 
27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal – Node Embedding Learning

• Nystrom-based approximation

• 𝑾+: pseudo-inverse of 𝑾

• Embedding: 𝒀 = 𝑪𝑼𝚺
1

2 where 𝑼, 𝚺, 𝑽 = SVD(𝑾+)

𝑺 ≈ ෨𝑺 = 𝑪𝑾+𝑪𝑇

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 
27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal – Alignment Inference

• K-D tree for fast similarity search

• Similarity scores:

• Complexity:
• Feature extraction: 𝑂(𝑛𝐾𝑑𝑎𝑣𝑔

2 )

• Node similarity: 𝑂(𝑛𝑝𝑏)

• Node embedding: 𝑂(𝑛𝑝2)

• Alignment: 𝑂 𝑛 log 𝑛

𝑠𝑖𝑚 𝑢, 𝑣 = 𝑒−
෩𝒀1 𝑢 −෩𝒀2 𝑣

2

2

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 
27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal – Experimental Results

• Data constructions: (1) noisy permutations of one 
network, (2) synthetic node attributes

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 
27th ACM International Conference on Information and Knowledge Management. 2018.
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Regal – Experimental Results

• Running time:

Faster computations due to landmark strategy 
and K-D tree search. 

Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 
27th ACM International Conference on Information and Knowledge Management. 2018.
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Overview of Part I

Collective NA Higher-Order NA Related Tasks

Part I: Recent Network 
Alignment (NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation
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Gromov-Wasserstein Learning for 
Graph Matching and Node Embedding

• Backgrounds:
• Networks are often noisy.

• Many methods learn specific transformations across 
embeddings of different networks.

• Key question:
• How to jointly learn node embeddings and infer alignment?

• Benefits of joint problem:
• Distance between learned node embeddings as auxiliary 

information of edges → help reduce noise

• Learn in same manifold → lower risk of model misspecification

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv 
preprint arXiv:1901.06003 (2019).
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GWL - Preliminaries

• Gromov-Wasserstein distance
• An optimal transport-like distance for metric spaces

• Calculates distances between pairs of samples of each domain

• Measures how these distances compare to those in other domains

• Gromov-Wasserstein discrepancy
• A relaxation by using dissimilarity measurement instead of strict 

distance metrics

• Metric-measure space of a graph
• Corresponds to a pair 𝑪, 𝝁 ∈ 𝑅 𝑉 × 𝑉 × Σ 𝑉 of a graph 𝒢.

• 𝑪 = 𝑐𝑖𝑗 represents a node distance/dissimilarity matrix.

• 𝝁 = 𝜇𝑖 is the empirical distribution of nodes. 

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv 
preprint arXiv:1901.06003 (2019).
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GWL - Gromov-Wasserstein Learning 
Framework

• Gromov-Wasserstein discrepancy between graphs
• Given 𝒢𝑠 and 𝒢𝑡, the discrepancy between (𝑪𝑠, 𝝁𝑠) and 𝑪𝑡 , 𝝁𝑡

• 𝐿(⋅,⋅): element-wise loss, e.g., mean square or KL-divergence

• 𝑻: optimal transport between nodes of two networks, 
indicating probabilities of alignment

• 𝑳𝑗𝑗′ = σ𝑖,𝑖′ 𝐿 𝑐𝑖𝑗
𝑠 , 𝑐𝑖′𝑗′

𝑡 𝑻𝑖𝑖′

• 𝑳 𝑪𝑠, 𝑪𝑡, 𝑻 = 𝑳𝑗𝑗′ ∈ 𝑅 𝑉𝑠 × 𝑉𝑡

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv 
preprint arXiv:1901.06003 (2019).
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GWL - Gromov-Wasserstein Learning 
Framework

• Proposed model
• Use node embeddings 𝑿𝑠 , 𝑿𝑡 for dissimilarity matrices

• 𝑪𝑠 𝑿𝑠 = 1 − 𝛼 𝑪𝑠 + 𝛼𝑲 𝑿𝑠 , 𝑿𝑠 where 𝑪𝑠 is computed 
by edge weights and 𝑲 𝑿𝑠 , 𝑿𝑠 measures distance within 
same network based on node embedding.

• 𝑹 𝑿𝑠, 𝑿𝑡 = σ𝑘=𝑠,𝑡 𝐿 𝑲 𝑿𝑘 , 𝑿𝑘 , 𝑪𝒌 + 𝐿 𝑲 𝑿𝑠 , 𝑿𝑡 , 𝑪𝑠𝑡

Optional when given labeled alignment

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv 
preprint arXiv:1901.06003 (2019).
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GWL – Learning Algorithm

• Alternatively learn optimal transport and embedding

• Learning optimal transport
• Proximal point method

• Updating embeddings
• Given optimal transport 𝑻 𝑚 , solve by gradient descent

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv 
preprint arXiv:1901.06003 (2019).
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GWL – Experimental Results

• Communication network alignment
• Dataset: MC3 used in the Mini-Challenge 3 of VAST 

Challenge 2018

• Model Variants:
• GWL-C and GWL-R: use

cosine and RBF distance 

on embeddings

• GWD: no embedding

-based distance

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv 
preprint arXiv:1901.06003 (2019).
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GWL – Experimental Results

• Procedure recommendation
• Dataset: MIMIC-III dataset

• Goal: recommend suitable procedures for patients, 
according to their disease characteristics.

Xu, Hongteng, et al. "Gromov-wasserstein learning for graph matching and node embedding." arXiv 
preprint arXiv:1901.06003 (2019).
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Overview of Part I

Collective NA Higher-Order NA Related Tasks

Part I: Recent Network 
Alignment (NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation
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Collective Network Alignment

• Goal: to find alignment across multiple networks

• Possible solution
• Find pairwise alignment 

• Then combine

• Transitivity constraint may be violated

• Problem setting:
• Given: more than two networks 𝒢 = 𝒢1, ⋯ , 𝒢𝑚
• Find: alignment across 𝒢𝑖 , 𝒢𝑗 (𝑖, 𝑗 = 1,⋯ ,𝑚) jointly
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Multiple Anonymized Social Networks 
Alignment

• Goal: to find anchor links/alignment across multiple 
networks without attributes

• Key challenge: how to preserve transitivity property

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE 
International Conference on Data Mining. IEEE, 2015.
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UMA – Unsupervised Pairwise Alignment

• Key idea: to minimize the alignment inconsistency
• I.e., the number of non-shared edges between those 

mapped from 𝒢 𝑖 and those in 𝒢 𝑗

• Mathematical formulation

• 𝑺 𝑖 , 𝑺 𝑗 : adjacency matrices of networks 𝒢 𝑖 and 𝒢 𝑗

• 𝑻 𝑖,𝑗 : alignment matrix from 𝒢 𝑖 to 𝒢 𝑗

one-to-one mapping 
constraints

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE 
International Conference on Data Mining. IEEE, 2015.
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UMA – Transitivity Penalties

• Measure the number of inconsistent edges between 
the mapped from 𝒢 𝑖 → 𝒢 𝑗 → 𝒢 𝑘 and 𝒢 𝑖 → 𝒢 𝑘

• Mathematical formulation

• Extension to 𝑛 (𝑛 ≥ 3) networks

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE 
International Conference on Data Mining. IEEE, 2015.
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UMA – Optimization Problem

• Objective: to minimize the alignment inconsistency 
and transitivity penalties simultaneously 

• Mathematical formulation

Alignment inconsistency

Transitivity penalties

One-to-one constraints

Linear constraint + L1 norm

Relaxations

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE 
International Conference on Data Mining. IEEE, 2015.
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UMA – Transitive Network Matching

• Goal: to solve for binary variable 𝑥𝑙,𝑚
𝑖,𝑗

indicating 

whether node 𝑢𝑙 in 𝒢 𝑖 is aligned with node 𝑢𝑚 in 𝒢 𝑗

• Optimization problem
• Select high scores in alignment

• One-to-one constraint

• Transitivity constraint

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE 
International Conference on Data Mining. IEEE, 2015.
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UMA – Experimental Results

• Dataset: Stack Overflow, Super User and Programmers

• Alignment performance

Zhang, Jiawei, and S. Yu Philip. "Multiple anonymized social networks alignment." 2015 IEEE 
International Conference on Data Mining. IEEE, 2015.
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COSNET: Connecting Social Networks 
with Local and Global Consistency

• Intuitions: binary classification over node pairs
• Instances: node pairs 𝑋 = {𝒙𝑖}

• Labels: 𝑌 = 𝑦𝑖 , 𝑦𝑖 = 1 if 𝒙𝑖 refers to same node, otherwise 0

• Factors considered:
• Node feature consistency (e.g., user profiles)

• Structural consistency

• Global consistency (i.e., transitivity constraints)

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 77



COSNET – Node Feature Consistency

• Intuition: to encode the feature similarity for 𝒙𝑖

• Formulation:

• 𝒈𝑙 𝒙𝑖 , 𝑦𝑖 is a vector-valued feature function

• Encodes the user profile similarity for node pair 𝑥𝑖
• 𝑤𝑙 is the model parameter

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 78



COSNET – Structural Consistency

• Intuition: 
• If two nodes are aligned, their neighbors are likely to be aligned

• Matching graph 𝑀𝐺 = (𝑉𝑀𝐺 , 𝐸𝑀𝐺)
• Same as Kronecker product graph

• Pairwise formulation:

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 79



COSNET – Global Consistency Violation

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 80



COSNET – Global Consistency

• Triadic closure in the matching graph

• Formulation:

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 81



COSNET – Model Learning

• Objective function:

• Define distance of two matching configurations 𝑌 and 𝑌′

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 82

Hamming distance



COSNET – Model Learning

• By max-margin theory:

• 𝑌, 𝑌: input labeled configuration and learned configuration

• 𝑊 = (𝒘𝑙 , 𝒘𝑒 , 𝒘𝑡): model parameters

• 𝜉: slack variable to handle non-separable data

• 𝜇: trade-off between the maximum margin & error penalty

• Constraint: distance between the energy of 𝑌, 𝑌 at least Δ( 𝑌, 𝑌)

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 83



COSNET – Model Learning

• The original problem is intractable.

• Use Lagrangian relaxation for dual decomposition

• 𝑓 ∈ ℱ: factor functions
• 𝝀: Lagrange multipliers

• Convex and non-differentiable

• Solution: projected sub-gradient method

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 84



COSNET – Public Dataset

• Data statistics

• Link: https://www.aminer.cn/cosnet

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 85

https://www.aminer.cn/cosnet


COSNET – Experimental Results

• Connecting social media sites
• Twitter, LiveJournal, Last.fm, Flickr, MySpace 

w/o global 
consistency

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 86



COSNET – Experimental Results

• Connecting Aminer with LinkedIn and VideoLectures

Zhang, Yutao, et al. "Cosnet: Connecting heterogeneous social networks with local and global 
consistency." Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 2015. 87



Overview of Part I

Collective NA Higher-Order NA Related Tasks

Part I: Recent Network 
Alignment (NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation

88



Embedding-Based Collective Network 
Alignment

• Goal: to learn node embeddings that can infer alignment 
in the embedding space
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Cross-Network Embedding for Multi-
Network Alignment

• Motivations: networks heterogeneity
• Different networks may own different semantic meanings;

• Same node may have distinct embeddings in different networks

• Goal: to learn node embeddings for multiple network 
alignment

• Key question: how to capture the commonness among 
anchor node counterparts and specific semantics in 
different networks?

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web 
Conference. 2019.
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CrossMNA – Cross Network Embedding

• Key idea: split node embedding into two components

• Intra-vector 𝒗𝑖
𝑘: captures structural information in a network

• Inter-vector 𝒖𝑖: captures the commonness of anchor node

• Network vector 𝒓𝑘: captures network-specific semantics

𝒗𝑖
𝑘 = 𝑾𝒖𝑖 + 𝒓𝑘

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web 
Conference. 2019.
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CrossMNA – Experimental Results

• Multiple network alignment

Precision@𝛼 vs. 𝛼 Precision@30 vs. training ratio

Twitter dataset

Arxiv dataset

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web 
Conference. 2019.
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CrossMNA – Experimental Results

• Multiple network link prediction

Observation: CrossMNA performs better due to transmitting 
complementary information across networks.

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web 
Conference. 2019.
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CrossMNA – Experimental Results

• Scalability: memory usage

Observation: CrossMNA has less memory 
usage than other baseline methods.

Chu, Xiaokai, et al. "Cross-network embedding for multi-network alignment." The World Wide Web 
Conference. 2019.
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Overview of Part I

Collective NA Higher-Order NA Related Tasks

Part I: Recent Network 
Alignment (NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation
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Higher-order Network Alignment

• Higher-order network mining:
• Involves higher-order structures, instead of edges

• Motivations:
• Traditional approaches (e.g., NetAlign) aim to maximize # of 

conserved edges (overlaps/squares).

• Leverage higher-order structures exist in networks (e.g., 
motifs, clusters, etc.).

• Single-level: use higher-order structures to align nodes

• Multilevel: to align both nodes and clusters at multi-level
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Triangular Alignment (TAME)

• Network motifs: connected subgraphs that occurs 
with significantly higher frequency
• 3rd-order: 3-node line, triangle

• 𝑘𝑡ℎ-order: k-node star, etc.

• Objective: to maximize # of aligned substructures

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
order network alignment." IEEE/ACM transactions on computational biology and bioinformatics 
14.6 (2016): 1446-1458. 97



TAME – Formulation #1 

• Binary quadratic program in NetAlign

• Higher-order extension

To maximize # of 
conserved edges

𝒯𝐻 and 𝒯𝐺: the motif-tensors 
associated with a m-node motif 
in both graphs G and H

• ∆H×𝐺= ∆𝐻 ⊗∆𝐺: Kronecker 
product of triangle tensors

• Counts # of conserved triangles

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
order network alignment." IEEE/ACM transactions on computational biology and bioinformatics 
14.6 (2016): 1446-1458. 98

𝒙𝑇 𝓣𝐻 ⊗𝓣𝐺 𝒙𝑚−1 = 𝓣𝐻 ⊗𝓣𝐺 𝒙𝑚



TAME – Formulation #2

• Relaxed formulation
• Remove one-to-one constraint and relax 𝒙 to be any reals

• Add a 2-norm constraint on 𝒙 to make it bounded

• The classic SS-HOPM is costly to solve it.

• Implicit kernel for computing tensor-vector products

Tensor eigenvector problem

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
order network alignment." IEEE/ACM transactions on computational biology and bioinformatics 
14.6 (2016): 1446-1458. 99



TAME – Algorithm

• Key ideas:
• To use implicit tensor-kernel product 𝒙 = ∆𝐻×𝐺𝒙

2 for 

• SS-HOPM main loop computes 

topological similarity matrices

• A score function to solve a

bipartite max-weight matching

∆𝐻×𝐺𝒙
3 = 𝒙𝑇𝒙

To encode integer constraint 
of 𝑋 and one-to-one mapping 
constraint

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
order network alignment." IEEE/ACM transactions on computational biology and bioinformatics 
14.6 (2016): 1446-1458. 100



TAME – Experimental Results

• Alignment quality on yeast vs. human dataset

Observation: TAME performs 
closely to the best method in 
preserving the # of conserved 
edges

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
order network alignment." IEEE/ACM transactions on computational biology and bioinformatics 
14.6 (2016): 1446-1458. 101



TAME – Experimental Results

• Metric: # of conserved triangles

Observation: TAME ranks 
the highest in terms of the 
number of conserved 
triangles

Mohammadi, Shahin, et al. "Triangular alignment (TAME): A tensor-based approach for higher-
order network alignment." IEEE/ACM transactions on computational biology and bioinformatics 
14.6 (2016): 1446-1458. 102



Multilevel Network Alignment

• Goals: to find node correspondence as well as the 
correspondence among clusters at different levels

• Motivation:
• Networks exhibit hierarchical cluster-within-clusters structure

NBA

CBA

basketball

soccer

NBA

CBA

soccer

basketball

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.

103



Moana – Challenges 

• C1: Alignment accuracy

• Errors propagate through levels

• C2: Scalability

NBA

CBA

basketball

soccer

NBA

CBA

soccer

basketball

𝓖𝟏
𝓖𝟐

Better than quadratic?

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana – Problem Definition

• Given:
• (1) adjacency matrices ഥ𝑨1, ഥ𝑩1 of two undirected networks;

• (2) a sparse prior alignment preference 𝑯1;

• (3) the number of levels 𝐿 ≥ 2 of interests.

• Find: a set of alignment matrices 𝑺𝑙 at level-𝑙, 𝑙 = 1,⋯ , 𝐿
• where 𝑺1 indicates the alignment at the node level

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana Formulation: Multilevel Optimization

• Generic strategy
• coarsening → alignment → interpolation

• Alignment interpolations
• Bilinear interpolations by 𝑷𝑙 ∈ 𝑅𝑝𝑙×𝑛1 , 𝑸𝑙 ∈ 𝑅𝑞𝑙×𝑛2 (𝑝𝑙≤
𝑛1, 𝑞𝑙 ≤ 𝑛2)

• w.l.o.g., 𝑺1 = 𝑸1
𝑇𝑺2𝑷1 between level-1 & level-2

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana Formulation: Multilevel Optimization

• Multilevel alignment formulation

• 𝑨2 = 𝑷1𝑨1𝑷1
𝑇 , 𝑩2 = 𝑸1𝑩1𝑸1

𝑇 and 𝑯2 = 𝑸1𝑯1𝑷1
𝑇

• same properties (e.g., convexity) and algorithm as FINAL-P

• ‘good’ (semi-) orthogonal 𝑷1, 𝑸1 make 𝑨2, 𝑩2 well-represented

min
𝒔1

𝛼𝒔1
𝑇 𝑰 − 𝑨1 ⊗𝑩1 𝒔1 + 1 − 𝛼 𝒔1 − 𝒉1 2

2Level-1:

min
𝒔2

𝛼𝒔2
𝑇 𝑰 − 𝑨2 ⊗𝑩2 𝒔2 + 1 − 𝛼 𝒔2 − 𝒉2 2

2Level-2:

If 𝑷1𝑷1
𝑇 = 𝑰 and 𝑸1𝑸1

𝑇 = 𝑰

FINAL-P 
at node level

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana Formulation: Perfect Interpolation

• Denote 𝑺𝑙
∗, 𝑺𝑙+1

∗ are optimal solutions at level-𝑙 and 
level- 𝑙 + 1

• Perfect interpolation (to address error propagation):

• If 𝑷𝑙 , 𝑸𝑙 𝑙 = 1,⋯ , 𝐿 − 1 are orthogonal

• Then 𝑺𝑙
∗ = 𝑸𝑙

𝑇𝑺𝑙+1
∗ 𝑷𝑙

Interpolation from the optimal alignment matrix at 
level-(𝑙 + 1) is equal to that at level-𝑙

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana – Coarsening Algorithm

• Generic strategy

• Coarsening→ alignment → interpolation

• Network coarsening by 𝑷𝑙 , 𝑸𝑙

• 𝑨𝑙+1 = 𝑷𝑙𝑨𝑙𝑷𝑙
𝑇 , 𝑩𝑙+1 = 𝑸𝑙𝑩𝑙𝑸𝑙

𝑇

• Requirements on 𝑷𝑙 , 𝑸𝑙

• Perfect interpolation: they are orthogonal matrix

• Efficient computation: they are sparse matrix

• Informative coarsening: they can uncover hierarchical 
cluster-within-clusters structures

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana – Coarsening Algorithm

• Multiresolution matrix factorization 

• Coarsening procedure
• 𝑷𝐿−1⋯𝑷2𝑷1𝑨1𝑷1

𝑇𝑷2
𝑇⋯𝑷𝐿−1

𝑇 = 𝑨𝐿 → ෩𝑨𝐿
• 𝑸𝐿−1⋯𝑸2𝑸1𝑩1𝑸1

𝑇𝑸2
𝑇⋯𝑸𝐿−1

𝑇 = 𝑩𝐿 → ෩𝑩𝐿

• 𝑺(𝒮𝐵𝑙 , 𝒮𝐴𝑙) indicates the alignment among clusters at 
the 𝑙-th granularity

𝚷 𝚷T

𝑨1𝑷1 𝑷1
𝑇𝑷2𝑷𝐿−1 𝑷2

𝑇 𝑷𝐿−1
𝑇 ෩𝑨𝐿

active sets 𝒮2𝒮𝐿−1 𝒮𝐿 ෩𝑨𝐿1
෩𝑨𝐿2

Kondor, Risi, Nedelina Teneva, and Vikas Garg. "Multiresolution matrix factorization." International 
Conference on Machine Learning. 2014.
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Moana – Alignment Algorithm

• Generic strategy
• coarsening → alignment→ interpolation

• Alignment across the coarsest networks

• Alignment at finer levels
• perfect interpolations: 𝑺𝑙 = 𝑸𝑙

𝑇𝑺𝑙+1𝑷𝑙

෩𝑺𝐿 = 𝛼
෩𝑩𝐿1 𝟎

𝟎 ෩𝑩𝐿2

෩𝑺𝐿1
෩𝑺𝐿2

෩𝑺𝐿3
෩𝑺𝐿4

෩𝑨𝐿1 𝟎

𝟎 ෩𝑨𝐿2
+ (1 − 𝛼)

෩𝑯𝐿1
෩𝑯𝐿2

෩𝑯𝐿3
෩𝑯𝐿4

෩𝑺𝐿1 = 𝛼෩𝑩𝐿1
෩𝑺𝐿1

෩𝑨𝐿1 + 1 − 𝛼 ෩𝑯𝐿1
෩𝑺𝐿2 = 𝛼෩𝑩𝐿1

෩𝑺𝐿2
෩𝑨𝐿2 + 1 − 𝛼 ෩𝑯𝐿2

෩𝑺𝐿3 = 𝛼෩𝑩𝐿2
෩𝑺𝐿3

෩𝑨𝐿1 + 1 − 𝛼 ෩𝑯𝐿3

𝒔𝐿4 = 1 − 𝛼 𝑰 − 𝛼෩𝑨𝐿2 ⊗
෩𝑩𝐿3

−1෩𝒉𝐿4

block-wise computation

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.

111



Moana – Experimental Setups

• Datasets
• Gr-Qc network vs. its permutation (nodes: 5,241 vs. 5,241)

• Google+ vs. its permutation (nodes: 23,628 vs. 23,628)

• Amazon co-purchasing networks (nodes: 74,596 vs. 66,951)

• ACM vs DBLP coauthor networks (nodes: 9,872 vs. 9,916)

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana – Experimental Results

(1) the performance of Moana is close to FINAL-P;
(2) Moana outperforms all other methods. 

Observations:

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana – Experimental Results

Moana achieves a good performance in cluster 
alignment at different levels.

Observation:

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana – Experimental Results

Moana can unveil meaningful alignment of 
clusters at different granularities.

Observation:

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Moana – Experimental Results

(1)Moana scales linearly w.r.t. the number of edges;
(2)Moana scales linearly w.r.t. the number of nonzero 

elements in 𝑯1.

Observation:

Zhang, Si, et al. "Multilevel network alignment." The World Wide Web Conference. 2019.
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Overview of Part I

Collective NA Higher-Order NA Related Tasks

Part I: Recent Network 
Alignment (NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation
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Entity Alignment

• Goal: to link entities among multiple knowledge graphs

• Problem Definition: 
• Given KGs 𝐾𝐺𝑖 𝐾𝐺𝑖 = 𝐸𝑖 , 𝑅𝑖 , 𝑇𝑖 and seed alignment ℒ;

• Find all the aligned entities

seed 
alignment

118



Iterative Entity Alignment via Joint 
Knowledge Embeddings

• Key components:
• Knowledge embedding: TransE, PTransE

• Joint embedding: translation-based, linear transformation 

• Iterative alignment: adding newly aligned entities

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE – Knowledge Embeddings

• TransE: relations as translating vectors

• Loss function:

• Negative samples: 

• PTransE: to encode multi-step relation path

𝒉 𝒕
𝒓

city of 𝐸 ℎ, 𝑟, 𝑡
= 𝒉 + 𝒓 − 𝒕

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE – Joint Embeddings

• Key idea: to join embeddings in a unified space

• Translation-based model:
• Key idea: view alignment as a special relation

• Formulation: given 𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2 → 𝒆1 + 𝒓 𝐸1→𝐸2 ≈ 𝒆2

• Linear transformation model:
• Key idea: embedding space can be transformed linearly

• Formulation: transformation matrix 𝑴 𝐸1→𝐸2

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.

121



ITransE – Iterative Alignment

• Key idea: iteratively adding newly aligned entities 

• Soft alignment:
• Reliability scores of newly aligned entities

• Score function for soft alignment

• Limit # of newly aligned entities to a threshold in each 
alignment procedure

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE – Experimental Results

• Dataset: DFB1, DFB2, DFB3 from FB15K

• Entity alignment performance
• ITransE: iterative alignment w/ TransE

• IPTransE: iterative alignment w/ PTransE 

Observations: 
• IPTransE performs better than ITransE
• Soft alignment performs better than hard alignment

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE – Experimental Results

• Effectiveness of soft alignment strategy

Observation: the performance of all 
methods increase with iterations.

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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Knowledge Graph Alignment via 
Graph Convolutional Networks

• Key idea: use GCNs to embed entities where aligned 
entities are expected to be as close as possible.

• Assumptions:
• Equivalent entities tend to have similar attributes

• Equivalent entities are neighbored by other equivalent entities

• Embedding framework:

Wang, Zhichun, et al. "Cross-lingual knowledge graph alignment via graph convolutional networks." 
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
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GCN-Align – Construct Adjacency Matrix

• KGs are relational multi-graphs (i.e., typed relations)

• Key idea: two measures on relations

• Edge weight: influence of 𝑖-th entity over 𝑗-th entity

Relation functionality:

Inverse functionality:

Wang, Zhichun, et al. "Cross-lingual knowledge graph alignment via graph convolutional networks." 
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
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GCN-Align – Alignment Prediction

• Model training:
• Margin-based rank loss for both 𝒉𝑠 and 𝒉𝑎
• 𝒉𝑠: structure embedding

• 𝒉𝑎: attribute embedding

• Small distance for aligned entities for prediction

• 𝑑𝑠, 𝑑𝑎: dimensions of structure and attribute embedding

• 𝛽: hyperparameter balancing importance of two embeddings

• For each entity 𝑒𝑖, return a list of candidate entities in KG2

𝐷 𝑒𝑖 , 𝑣𝑗 = 𝛽
𝒉𝑠 𝑒𝑖 − 𝒉𝑠 𝑣𝑗 1

𝑑𝑠
+ 1 − 𝛽

𝒉𝑎 𝑒𝑖 − 𝒉𝑎 𝑣𝑗 1

𝑑𝑎

Wang, Zhichun, et al. "Cross-lingual knowledge graph alignment via graph convolutional networks." 
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
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GCN-Align – Experimental Results

• Datasets: DBP15K from DBpedia with different languages

Wang, Zhichun, et al. "Cross-lingual knowledge graph alignment via graph convolutional networks." 
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.
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Overview of Part I

Collective NA Higher-Order NA Related Tasks

Part I: Recent Network 
Alignment (NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation
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Multi-layered Networks

• An example of multi-layered networks

Infrastructure networks Biological system networks

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. 2016. 130



Cross-Layer Dependency Inference

• Given: a multi-layered network
• Layer-layer dependency matrix 𝑮;

• Within-layer connectivity matrices 𝒜 = 𝑨1, ⋯ , 𝑨𝑔 ;

• Observed cross-layer dependency matrices 𝒟 = 𝑫𝑖𝑗

• Find: true cross-layer dependency matrices ෩𝑫𝑖𝑗

• To link different types of nodes (alignment links same)

• 𝑨1 for chemical network, etc.
• 𝑮 1,2 = 1, 𝑮 1,3 = 0;
• 𝑫12 are represented by solid 

arrows between 𝒢1 and 𝒢2

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. 2016. 131



Fascinate – Formulation 

• Key idea: as a collective collaborative filtering problem
• Within-layer networks as user-user network, item-item 

similarity network, etc.

• Cross-layer dependency as user-item ratings

• Optimization problem:

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. 2016. 132



Fascinate – Optimization Algorithm

• Block coordinate descent method

• For each 𝑭𝑖, use multiplicative update method

where

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. 2016. 133



Fascinate – Experimental Setups

• Datasets:

• Abstract dependency structure

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. 2016. 134



Fascinate – Experimental Results

• Effectiveness of dependency inference on BIO

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. 2016. 135



Fascinate – Experimental Results

• Effectiveness of dependency inference on INFRA-5

Chen, Chen, et al. "FASCINATE: fast cross-layer dependency inference on multi-layered networks." 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. 2016. 136



Overview of Part I

Collective NA Higher-Order NA Related Tasks

Part I: Recent Network 
Alignment (NA) Algorithms

Pairwise NA

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes

▪ Consistency-based
▪ w/o attributes
▪ w/ attributes

▪ Embedding-based
▪ w/o attributes
▪ w/ attributes

▪ Optimal transport-
based
▪ w/o attributes

▪ Consistency-based
▪ Single-level
▪ Multilevel

▪ Entity alignment
▪ Non-GNN based
▪ GNN-based

▪ Cross-layer inference
▪ Cross-network 

transformation
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Cross-Network Node Associations

• Goal: to find node associations across different networks

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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Limitations of Traditional Methods

• Linear and/or consistency assumptions

• Embedding space disparity issue

Graph matching-based 
network alignment

Factorization-based 
recommendation and cross-
layer dependency inference

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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Cross-Network Transformation

• Given: (1) Source and target networks 𝒢1 = 𝒱1, 𝑨0, 𝑿0 , 𝒢2 =
𝒱2, 𝑩0, 𝒀0 ; Observed cross-network node associations 𝑳

• Output: (1) Cross-network transformation function 𝑔, s.t. 
𝑔(𝒢1) ≈ 𝒢2; (2) Node association function 𝑔𝑛𝑜𝑑𝑒

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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NetTrans – Model Overview

• Key idea: encoder-decoder architecture
• Encoder: to coarsen source network at different resolutions

• Decoder: to reconstruct target network at different resolutions

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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NetTrans – Encoder

• Key component: TransPool as a pooling layer

• Supernode selection
• Self-attention-based pooling 

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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NetTrans – Encoder

• Supernode representation learning
• Attention-based message passing

• Aggregation by node-to-supernode assignment 

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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NetTrans – Encoder

• Node-to-supernode assignment
• Gumbel softmax to approximate 𝑷

• Supernode candidate pruning

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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NetTrans – Encoder

• Supernode connections
• Use auxiliary connections 𝑨𝑙

𝑨𝑙 =
1

2
𝑨𝑙−1 𝐼, 𝐼 + 𝑨𝑙

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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NetTrans – Decoder

• Goal: to reconstruct target network

• Key idea: same latent meanings of supernodes
• Part #1: leverage 𝒢1 by skip connections

• Part #2: calibrate part #1 from supernodes to nodes

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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NetTrans – Experimental Results

• Effectiveness of NetTrans for network alignment

Observation: NetTrans outperforms all other 
baselines for network alignment task

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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NetTrans – Experimental Results

• Effectiveness of NetTrans for social recommendation

Observation: NetTrans outperforms all other 
baselines for recommendation task

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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RoadMap

• Motivations and Background

• Part I: Recent Network Alignment Algorithms

• Part II: Network Alignment Applications

• Part III: Future Research Directions

Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
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Overview of Part II

Bioinformatics

Part II: Network Alignment 
Applications

Social Analysis

▪ User identity linkage
▪ Recommendation

▪ Friends
▪ Products

▪ Information diffusion

▪ Identify functional 
orthologs and 
knowledge transfer
▪ Evolutionary 

relationships
▪ Human aging

▪ Connectome Analysis

Knowledge Base

▪ Knowledge 
completion

Security

▪ Modeling adversarial 
activities
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Social Analysis – User Identity Linkage

• User Identity Linkage
• To identify the same physical user across social platforms

• Can be used for de-anonymization, information integration, etc.

Username

Location

Gender

Descriptions

Username

Education

Gender

Biography
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User Identity Linkage

• Existing methods:
• Profile based [Zafarani’13, Zhang’14, Perito’11, Vosecky’09]

• Network based [Zhou’16, Zhang’15, Liu’16]

• Profile + network based [Zhang’15, Shen’14, Zhang’’16]

• Network-based can be considered as network 
alignment w/o attributes.

• Profile + network-based methods can be viewed as 
network alignment w/ attributes.
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Social Analysis - Recommendation

• Friend recommendation:
• For two social networks, if we know 

• User 𝑢1 is a friend of user 𝑢2 in 𝒢1
• User 𝑣1 in 𝒢2 and user 𝑢1 in 𝒢1 are 

same person

• User 𝑣2 in 𝒢2 and user 𝑢2 in 𝒢2 are 

same person

• But user 𝑣1 and user 𝑣2 are not friend in 𝒢2
• Then, we can recommend 𝑣1 to user 𝑣2

Yan, Ming, et al. "Friend transfer: Cold-start friend recommendation with cross-platform transfer learning of social
knowledge." 2013 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2013.
Nelakurthi, Arun Reddy, and Jingrui He. "Finding cut from the same cloth: Cross network link recommendation via
joint matrix factorization." Thirty-First AAAI Conference on Artificial Intelligence. 2017.
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Cross-Site Friend Recommendation

• Think of it as a cross-site link prediction problem

• Given two incomplete social networks, we jointly solve 
network alignment and link prediction problems
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CENALP – Network Embedding 

• DeepWalk-based network embedding
• Key idea: build a world-view graph

• Within-network node sampling with a probability of 𝑞, and 
cross-network sampling with 1 − 𝑞

• Allows for cross-network Skip-gram embedding

• Construction of 𝑷𝒢𝒢′ by structure and attribute

Du, Xingbo, et al. "Cross-network Skip-gram Embedding for Joint Network Alignment and Link
Prediction." IEEE Transactions on Knowledge and Data Engineering (2020).
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CENALP – Network Alignment and 
Link Prediction

• Greedy alignment by embedding-based similarity
• Given embeddings of 𝑢, 𝑢′ in two networks

• Greedy-based alignment objective

• Embedding for link prediction

Du, Xingbo, et al. "Cross-network Skip-gram Embedding for Joint Network Alignment and Link
Prediction." IEEE Transactions on Knowledge and Data Engineering (2020).
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CENALP – Algorithm

• Objective function

• Overall procedure

Du, Xingbo, et al. "Cross-network Skip-gram Embedding for Joint Network Alignment and Link
Prediction." IEEE Transactions on Knowledge and Data Engineering (2020).
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CENALP – Experimental Results

• AUC score of link prediction 

Du, Xingbo, et al. "Cross-network Skip-gram Embedding for Joint Network Alignment and Link
Prediction." IEEE Transactions on Knowledge and Data Engineering (2020).
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Social Analysis - Recommendation

• Cross-site product recommendation:
• Intuition: if users are aligned, purchase histories can be 

combined for better recommendation

• Key idea: leverage cross-site actions to improve user modeling

• Benefits: may mitigate issues, e.g., cold start, etc.

Users Items
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JUMA – Approach 

• Key idea: use a probabilistic graphical model for joint 
user modeling over aligned sites

• User’s site-specific preference 

𝑃𝑖
𝑞

is transferred from 

universal preference 𝑈𝑖 by 
transferring model 𝑇𝑞.

• User conducts actions 𝐴𝑖
𝑞

based on 𝑃𝑖
𝑞

and site-specific 

item models 𝜙𝑘
𝑞

.

Cao, Xuezhi, and Yong Yu. "Joint user modeling across aligned heterogeneous sites." Proceedings
of the 10th ACM Conference on Recommender Systems. 2016.
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JUMA – Approach 

• Joint user modeling over aligned sites

• For item-based site (Douban), 
use matrix factorization 
method.

• For text-based site (Weibo), use 
Latent Dirichlet Allocation (LDA) 
to model topic distributions for 
microblogs.

Cao, Xuezhi, and Yong Yu. "Joint user modeling across aligned heterogeneous sites." Proceedings
of the 10th ACM Conference on Recommender Systems. 2016.
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JUMA – Experimental Results 

• Effectiveness of recommendation

Observation: JUMA performs best for both text-
based site Weibo and item-based site Douban.

Cao, Xuezhi, and Yong Yu. "Joint user modeling across aligned heterogeneous sites." Proceedings
of the 10th ACM Conference on Recommender Systems. 2016.
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JUMA – Experimental Results 

• Effectiveness of addressing cold-start

Observation: Improvements are higher when 
dealing with cold users than non-cold users.

Cao, Xuezhi, and Yong Yu. "Joint user modeling across aligned heterogeneous sites." Proceedings
of the 10th ACM Conference on Recommender Systems. 2016.
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Social Analysis – Information Diffusion

• Motivations
• Users can post messages in multiple platforms;

• Information thus propagates within-network and across 
networks.

social network 1 social network 2
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M&M – Approach 

• Goal: multi-aligned multi-relational network influence 
maximizer

• Key idea: to extends traditional linear threshold to 
depict diffusion across networks

• Activation probability functions:
• For intra-network relation 𝑖

• For inter-network relation 𝑗

Zhan, Qianyi, et al. "Influence maximization across partially aligned heterogenous social
networks." Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham,
2015. 165



M&M – Experimental Results 

• Effectiveness of influence maximization

• Metric: # of activated users by the seed users

Zhan, Qianyi, et al. "Influence maximization across partially aligned heterogenous social
networks." Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham,
2015. 166



Overview of Part II

Bioinformatics

Part II: Network Alignment 
Applications

Social Analysis

▪ User identity linkage
▪ Recommendation

▪ Friends
▪ Products

▪ Information diffusion

▪ Identify functional 
orthologs and 
knowledge transfer
▪ Evolutionary 

relationships
▪ Human aging

Knowledge Base

▪ Knowledge 
completion

Security

▪ Modeling adversarial 
activities
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Bioinformatics – Knowledge Transfer

• Motivations:
• Traditional methods are based on sequence alignment

• Network data and sequence data provide complementary 
insights

• Restricting to sequences may limit knowledge transfer

• Network alignment to identify functional orthologs 
• Benefits: insightful for knowledge of aging and other 

biological processes.

Faisal, Fazle E., et al. "The post-genomic era of biological network alignment." EURASIP Journal
on Bioinformatics and Systems Biology 2015.1 (2015): 3.
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Knowledge Transfer – Evolutionary 
Relationships Discovery

• Goal: using network alignment to guide biological 
knowledge transfer 
• From well-studied species to less well-studied species

• Methods:
• GRAAL and H-GRAAL: focused on phylogenetic tree 

inference based on metabolic networks

• MI-GRAAL:

• Used these PPI network data to infer evolutionary 
relationships

• Considered five herpesviruses based on their network 
similarities.

Faisal, Fazle E., et al. "The post-genomic era of biological network alignment." EURASIP Journal
on Bioinformatics and Systems Biology 2015.1 (2015): 3.
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Knowledge Transfer – Human Aging 
Discovery

• Motivations:
• Susceptibility to diseases increases with age

• Important to study molecular mechanisms behind aging and 
aging-associated diseases

• Traditional methods: 
• Transferring knowledge from well-studied species to human 

between conserved sequence regions

• Network alignment-based methods:
• MI-GRAAL and IsoRankN: align well known aging-related 

network parts of one species to known aging-related 
network parts of other species

Faisal, Fazle E., et al. "The post-genomic era of biological network alignment." EURASIP Journal
on Bioinformatics and Systems Biology 2015.1 (2015): 3.
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Knowledge Completion

• Goal: to complete a triple (ℎ, 𝑟, 𝑡) when one of ℎ, 𝑟, 𝑡
is missing

• Application scenario by entity alignment:
• Two sets of triplets (i.e., KGs) for training

• One set of triplets for testing 

• Two training KGs can be aligned

• Methods:
• Basically can be any KG alignment methods

• ITransE/IPTransE for example

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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ITransE – Experimental Results

• Effectiveness of ITransE for knowledge completion

Observation: By successfully leveraging the auxiliary 
information (i.e., second KG by alignment), ITransE and 
IPTransE perform better than other baseline methods.

Zhu, Hao, et al. "Iterative Entity Alignment via Joint Knowledge Embeddings." IJCAI. Vol. 17. 2017.
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Security – Modeling Adversarial Activities

• Background:
• Networks are natural structure to model adversarial activities

• Smuggling

• Illegal arm dealing

• Illicit drug production

• But such activities are often embedded in different domains

Xu, Jiejun, et al. "GTA3 2018: Workshop on Graph Techniques for Adversarial Activity Analytics."
Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.
2018. 175



MAA – Challenges 

• Domain heterogeneity
• Communication networks

• Phone call, emails, text, etc.

• People who call each other may unlikely text often

• Similarly, email network is structurally distinct from phone 
call network

• Spatial-temporal challenge
• Relations contain much spatial-temporal information

• Who calls whom at which location and at what time

• Very large-scale networks
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MAA – Approaches

• Any scalable network alignment methods
• w/o attribute: only based on connections 

• w/ attribute: view spatial-temporal information as attributes

• Encode temporal information:
• Count # of connections in certain time window

• Values at all time windows form node attributes

• Can be used as attribute-based prior similarity matrix 

• And/or as the attributes in attributed alignment methods (e.g., 
FINAL)
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RoadMap

• Motivations and Background

• Part I: Recent Network Alignment Algorithms

• Part II: Network Alignment Applications

• Part III: Future Research Directions
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Big Network Alignment – 4Vs 

• 4V characteristics also hold for networks
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Big Network Alignment – Volume 

• Real-world networks are very large-scale
• Facebook, Instagram, Twitter have billions of users

• Challenge: most of existing methods have at least 
𝑂 𝑛2 complexity
• Some recent consistency-based and embedding-based 

methods reduce the complexity to linear

• Complexity may be even larger if we handle multiple 
networks collectively

• Question: how to efficiently do network alignment?

• Possible directions: (1) leverage approximation 
techniques, (2) parallelizable algorithm
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Big Network Alignment – Variety

• Real-world networks have rich information
• Node/edge attributes, text descriptions, temporal information

• Methods exist to handle attribute information
• But few can handle temporal relation information

• Who called whom at what time, etc.

• Question: how to better incorporate side-information 
into network alignment?

• Possible directions: heterogeneous network alignment, 
temporal network alignment, etc.
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Big Network Alignment – Variety

• Network heterogeneity
• Networks to be aligned carry different types of information

• Even same user may behave differently in different networks

• Existing methods explicitly or implicitly build upon 
consistency assumptions
• But network heterogeneity may easily violate this assumption

• Questions: 
• How to align different types of networks (e.g., LinkedIn vs. FB)?

• How to adaptively control consistency assumption?

• Possible directions: Deep learning methods that are 
highly learnable.

182



Big Network Alignment – Velocity

• Networks are dynamically changing over time.

• Dynamic network alignment
• Simple solution: run from scratch at each timestamp

• Limitation: time consuming; can’t capture dynamics

• Questions:
• How to efficiently handle alignment over dynamic networks?

• How to leverage the dynamics (e.g., smoothness)?

• Possible directions: 
• Matrix approximation to avoid unnecessary re-computations.

• Dynamic network embedding-based alignment methods.
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Big Network Alignment – Veracity

• Real-world networks are often noisy and incomplete.
• Missing connections

• Missing nodes

• Missing attribute information

• Existing methods:
• Jointly solve network alignment and link prediction

• Benefit: if handled properly, they mutually benefit each other

• Challenge: error propagation
• If alignment or imputed edges are not correct, the 

performance will be hurt.
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Adversarial Network Alignment

• Improve the alignment effectiveness and robustness

• Noise/adversarial attacks can mislead alignment
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Adversarial Network Alignment

• Background:
• Existing adversarial attacks on network alignment are based 

on derivative-based importance score

• But no work exits on adversarial defense

• Challenge:
• Compared to adversarial attack/defense in single network, 

multiple networks may further complicate the defense 
process.

• Possible direction: 
• Graph neural network-based adversarial learning on 

network alignment
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Integrated Network Alignment

• Explainable network alignment
• Background: there exist explainable network mining tasks

• Network embedding

• Graph neural networks

• Ranking, clustering, etc.

• Problem goal:

• Explain why two nodes should be aligned or not

• Possible directions:

• Extend explainable network embedding to embedding-
based network alignment
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Integrated Network Alignment

• Fair network alignment
• Background:

• Fairness has been studied recently in many machine 
learning and data mining tasks

• Fairness in graphs has attracted attentions very recently, 
but for single network

• Problem goal: 

• To debias the network alignment

• Possible direction:

• Extend fairness in single network mining to multiple 
networks first, then combine the specific objective of 
network alignment 
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189

Summary

• Background and motivation
• Network alignment aims to find node correspondence 

across networks

• A key step to many mining tasks across multiple networks

• Recent network alignment algorithms
• Pairwise network alignment

• Collective network alignment

• Higher-order network alignment

• Other related tasks

• Network alignment applications

• Future directions
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